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Abstract

I study the problem of a persuader who proposes a set of models to manipulate how a

boundedly rational agent interprets observable signal realizations. The persuader does not

control or know the signal the agent observes. The key assumption is that the agent adopts

the model that best fits what is observed, given her initial beliefs, and takes the action

that maximizes her expected utility under the adopted model. I study the extent of belief

manipulability in this setting by characterizing the feasible posteriors across signals. Because

each signal could trigger the adoption of a different model, the agent might hold inconsistent

beliefs across signal realizations — posterior beliefs across signals do not average to the prior.

While persuasion can mislead the agent, the extent to which she is vulnerable to it is driven

by her initial beliefs. Polarization is inevitable if agents with sufficiently different priors are

exposed to the same conflicting models. I apply this framework to political polarization,

conflict of interests in finance, lobbying, and self-persuasion.
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1 Introduction

Beliefs are shaped by how we interpret the world. When we use different interpretations to

make sense of the same event, we might reach contrasting conclusions. Voters may disagree on

the outcome of an election. Consumers often differ in how they evaluate companies based on the

same public initiatives. Investors make different predictions based on the same past data. This

occurs even when we share the same preferences and initial beliefs. One potential explanation

for reaching divergent conclusions in such cases is that we adopt different narratives to interpret

the same data. Narratives link what we observe to what we want to understand: they provide

interpretations of events.1 Thus, influencing the narratives people adopt can be a powerful tool

to manipulate and persuade them. Indeed, when making sense of the observed data, one might

rely on narratives provided by more knowledgeable sources, such as political figures, financial

advisors, or experts considered trustworthy. This type of persuasion is powerful because it

allows for changing people’s beliefs without controlling or even knowing what they observe.

I study the problem of persuading a boundedly rational agent by strategically providing inter-

pretations of possible events independent of what is actually observed. Consider an agent (the

receiver, she) who after observing a new piece of information about the relevant payoff state

takes an action that affects both her payoff and the persuader’s (the sender, he). This addi-

tional information on the unknown state, a signal, is generated by a fixed stochastic process.

The sender cannot manipulate the signal or the process generating it. Still, he can provide the

receiver with one or multiple ways of interpreting the possible signal realizations, called models.

Following Schwartzstein and Sunderam (2021), a model provides likelihood functions that as-

sign to each state a distribution of signals conditional on that state.2 Persuasion arises because

the receiver adopts the most plausible model given what she observed. This is formalized by

adopting the model that maximizes the likelihood of the realized signal given her prior, the

fit. Without knowing the signal realization, the sender strategically communicates models to

manipulate how the receiver interprets the different signal realizations.

Suppose a politician wishes to persuade a (representative) voter that he is the legitimate pres-

ident regardless of the reported election outcome. The voter will recognize the politician as

president only if she strongly believes him to be the legitimate winner once she observes the

reported election outcome. Before the election, the politician communicates to the voter models

about the election system. Assume that the politician communicates only the model according

to which the voting system is fair. Since there is only one model available, the voter always

adopts that. Then, once the election outcome is revealed, the voter would recognize the politi-

cian as president if the latter is the reported winner, while she would not otherwise. How can

the politician be recognized as the legitimate president regardless of the election outcome? He

cannot manipulate the reported election outcome or the voting system. Therefore, before the

1The Cambridge Dictionary defines a narrative as “a particular way of explaining or understanding events.”
Despite the growing attention to this topic in economics, there is not yet a commonly shared definition of
what a narrative is. Different ways of formalizing it have emerged in recent years, and I discuss the main ones
when reviewing the related literature. Barron and Fries (2022) provide a detailed discussion of the current
conceptualization of narratives in economics in their appendix.

2Sometimes, while discussing examples, I informally refer to models as narratives or stories.
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vote, the politician also promotes a conspiracy theory according to which elections are rigged.3

Exposure to multiple models allows inconsistent reasoning to take root: each election outcome

triggers the adoption of a different model. The voter’s initial beliefs play a crucial role because

they drive which model is adopted based on the reported outcome. Assume that the voter

expects the politician to win the election fairly. If the politician is the reported winner, the

most plausible model is the one about the just voting system; however, if the politician is not

the reported winner, the conspiracy theory resonates best with the voter. This is equivalent to

the voter holding an inconsistent interpretation across election outcomes: “if this politician is

reported as the winner, the election system is fair; otherwise, elections are rigged.”4 As a re-

sult, the voter is updating upwards her beliefs about the politician being the legitimate winner,

recognizing him as president regardless of the election outcome. The politician achieved this by

leveraging how the voter makes sense of the reported election outcome, and he exploited it by

providing conflicting models.

To what extent can the sender manipulate the receiver’s beliefs using models? To answer this

question, it is necessary to keep track of the beliefs the receiver holds conditional on every

signal realization. Therefore, the main object of the analysis is an array of the receiver’s

posterior beliefs conditional on each signal, called a vector of posterior beliefs. In the previous

example, this means describing the voter’s beliefs conditional on both election outcomes: when

the politician is the reported winner of the election and when he is not. The main result of this

paper characterizes the set of feasible vectors of posterior beliefs. It conveys two main insights.

First, the sender can always bias the receiver’s beliefs in a given direction. If many models

are provided, each signal might lead the receiver to adopt a different model. As a result, the

receiver’s beliefs may be inconsistent across realizations: the prior cannot be expressed as a

convex combination of the posteriors across signals. Bayesian models do not allow for this

type of inconsistency. In this setting, the sender can induce a feasible and inconsistent vector of

posteriors by providing as many models as there are possible signal realizations. In the example,

each voter’s posterior is higher than her prior. The politician achieves this with two models:

one tailored to the case of reported victory and one tailored to the case of reported loss.

Second, there are constraints on beliefs the sender is able to induce. Generally, not all vectors

of posteriors are feasible. To induce a vector of posteriors, the sender should construct a set of

tailored models so that each model is adopted conditional on the signal to which it has been

tailored, inducing the desired posterior conditional on that signal. Because models compete

with each other across signal realizations, such a set of models does not always exist. The

intuition is the following. There is a trade-off between how well a model can explain a signal

and how far it can move posteriors from the prior given that signal. To ensure that each signal

triggers the adoption of its tailored model, the posteriors across realizations should not be too

3For simplicity of exposition, I describe these inconsistent models as provided by a single agent. Alternatively,
one could think about this as a coordinated strategy implemented by different agents. The receiver might be less
sensitive to this type of contradiction, and the credibility of the sources would be less likely to be questioned.

4The following are examples of other domains in which agents might hold inconsistent interpretations, as a
result of selecting different models conditional on different facts. While interpreting a grade at school, a student
that believes she is competent in a subject might believe the following story: “if it’s a good grade, it must be very
informative about ability; if it’s a bad grade, it does not convey much information.” When learning about the new
COVID-19 vaccine, somebody skeptical about vaccines might think: “if clinical trials report the vaccine as safe,
tests were conducted in a hurry; if clinical trials report the vaccine as unsafe, tests were conducted properly.”
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distant from the prior overall. In particular, the theorem pins down the extent to which this

is feasible: on average the maximal movement across signals cannot be higher than a bound

given by the number of signal realizations. Moreover, the maximal belief manipulability —

inducing the furthest vectors of posteriors from the prior that are still feasible — is generated

by maximal overfitting : each tailored model maximally fits the target signal given the desired

posterior. This is because the more a model fits a signal, the more freedom to move posteriors

away from the prior conditional on the other signals with other models. To better convey the

intuitions behind these formal results, I introduce a graphical approach for the special case of

binary signal and state (hereafter, binary case). This also yields a graphical construction of

which vectors of posterior beliefs are feasible.

Having explored the limits of belief manipulability, I turn to the question of what makes the

receiver more vulnerable to persuasion. Initial beliefs play a crucial role. In the binary case, the

sets of feasible vectors of posteriors can be ordered based on the prior: the closer the receiver’s

prior is to the uniform distribution, the more she can be manipulated. When her prior is 50-50,

the receiver is fully persuadable: the sender can provide a set of models to make her hold any

beliefs regardless of what she observes. More generally, I provide sufficient conditions for full

manipulability. The sender has more leeway to manipulate if there are many signals to be

interpreted and few states on which the receiver has dispersed priors. If the signals are at least

as many as the states, a receiver with a uniform prior can be persuaded to believe anything. If

there are fewer signals than states, the receiver is not fully persuadable regardless of her prior.

What if the receiver does not only consider the models provided by the sender, but also considers

other models? In an extension, I allow the receiver to initially hold a model by default. She

adopts other models only if these are better at explaining new information with respect to this

default model. I characterize the set of feasible vectors of posteriors in this case and show how

a default model constrains belief manipulation. Then, I prove how this result is connected with

the main result: the set of feasible vectors of posteriors without a default model is the union of

all the sets of feasible vectors of posteriors with a default model for every default model.

I present several stylized applications that fit this setting. First, I elaborate on the above

example of the politician and the voter. Being exposed to multiple models on the trustworthiness

of the voting system might induce the voter to have a double standard in assessing candidates’

reported victory, always supporting one candidate regardless of the election outcome. I use

this example to illustrate why it is in the best interest of the sender to provide conflicting

models. Communicating a large number of possibly contradictory and untruthful stories is one

of the central features of the “firehose of falsehood,” a propaganda technique described by Paul

and Matthews (2016) and usually associated with modern Russia. This type of disinformation

campaign is reported to be generally effective in manipulating the audience. Even if beneficial

for the persuader, such a communication strategy can have severe consequences for the audience:

conflicting models lead to inevitable belief polarization in a population of heterogeneous voters.

When voters with sufficiently different priors are exposed to the same pair of conflicting models,

their beliefs always diverge further. Regardless of what happens, voters adopt different models

to make sense of the election outcome and they update in opposite directions. I formalize this

result for the binary case and I provide some suggestive evidence of this mechanism using the
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case of the 2020 US presidential election.5

Second, I study the misalignment of incentives between a financial advisor and investors with

private information. Indeed, the setting I study in this paper is suitable not only for temporal

interpretation (the sender communicates models before the signal realizes), but also for a private-

information one: the receiver has access to the signal, but the sender does not. Thus, the advisor

communicates different models that could be picked up depending on the private information

of the investors, e.g., past financial experience. The advisor can manipulate investors regardless

of their past experience, always moving her beliefs in an advantageous direction. If investors

have favorable expectations towards the advisor-preferred asset, they always invest fully in that

asset. The advisor can achieve this by exposing investors to conflicting ways of looking at past

data: there is either a perfectly positive or a perfectly negative correlation between past and

future events. This does not work for investors with pessimistic priors; thus the advisor needs

to adjust his communication to persuade them.

The third application explores a multiple-selves setting in which an agent can distort her own

beliefs by manipulating the perceived informativeness of observable signals. This proposed

mechanism can deliver the classic implications of the literature on motivated beliefs but also sets

a bound on belief distortion. First, I comment on how leaving data open to interpretation allows

inconsistent reasoning to take root and may be used to achieve self-serving beliefs. Second, I

illustrate how models allow an agent to distort her confidence to offset her time-inconsistent

preferences and commit to a costly action.

Last, I show how a strategic persuader could challenge a shared model to insinuate doubt and

deepen polarization for agents differing in initial beliefs. I exemplify this in the context of

the lost trust in science on issues like climate change and the health effects of smoking, where

the so-called “merchants of doubt” (e.g., Michaels, 2008; Oreskes and Conway, 2011) provided

alternative ways of interpreting scientific evidence. Holding a shared initial model does not

deter polarization in a population of heterogeneous receivers.

This paper speaks directly to two strands of economic literature — narratives and persuasion —

that have flourished in the last decade (see Section 6 for a more detailed discussion of the related

literature). Starting from Shiller (2017, 2019), there has been an increasing formalization of

narratives in the economic literature using different notions: narratives as likelihood functions

(Schwartzstein and Sunderam, 2021), or directed acyclical graphs (Eliaz and Spiegler, 2020),

or moral reasoning (Bénabou et al., 2018). This paper builds on the first approach. Inspired

by the interdisciplinary research on sense-making (Andreassen, 1990; Weick, 1995; DiFonzo and

Bordia, 1997; Chater and Loewenstein, 2016), Schwartzstein and Sunderam (2021) formalize

the concept of models as used in this paper and assume that individuals prefer the model that

best fits the observed data and prior knowledge. They study the problem of manipulating

a receiver endowed with a default model by strategically providing her with a model after a

public signal is realized (ex-post). Instead, I investigate a setting in which the sender commits

to his communication strategy without knowing the signal realization (ex-ante). The reason

is two-fold. First, it is a sensible assumption. Shifting communication ex-ante may give more

5The 2020 US presidential election provides an example of conflicting narratives communicated to voters
before the release of the election outcome. Before the ballot, Donald Trump spread allegations on how elections
could be rigged against him, especially through the vote-by-mail system. I use this case to illustrate some stylized
facts in line with my predictions.
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credibility to the sender. For example, a voter may be skeptical if the politician claims elections

to be rigged only after he lost the election. Also, the sender might be unable to learn the

information available to the receiver in some cases. For example, an investor might prefer

not to disclose to her financial advisor some relevant private information, such as previous

experiences. Second, ex-ante commitment imposes a constraint on the sender. The main result

of the present paper addresses this. Extending this result to the case in which the receiver has a

default model allows comparability with Schwartzstein and Sunderam (2021). I find that, with a

default model, the sender can attain the same outcome with ex-ante or ex-post communication

of models.6 However, because models compete with each other, the set of ex-post optimal

models might not be optimal if provided ex-ante.

The strategic provision of models implies significant differences from the previous literature on

persuasion. The sender does not alter the signal the receiver observes, unlike the cheap talk

literature (e.g., Milgrom, 1981; Crawford and Sobel, 1982). Moreover, there is a fixed signal

generating process that cannot be manipulated. This is in stark contrast with the literature

on Bayesian persuasion, started by Kamenica and Gentzkow (2011) and continued by many

generalizations of their framework (e.g., Alonso and Câmara, 2016; Ely, 2017; Galperti, 2019;

Ball and Esṕın-Sánchez, 2021). In broad terms, these papers are about persuasion by gener-

ating information: the sender commits to an experiment that maps each state realization to a

distribution of signals. In the political example, this translates into the politician manipulating

the voting system and its accuracy. Because the chosen signal generating process induces a dis-

tribution over the receiver’s posterior beliefs, such a distribution must be Bayes-plausible: the

expected posterior has to average to the prior. With this paper, I relax the Bayes plausibility

constraint in a disciplined manner. By providing models ex-ante, the sender can induce poste-

riors across realizations unattainable with Bayesian persuasion. However, this communication

strategy generally imposes restrictions on what the sender can achieve without the ability to

modify how the signal is generated or which signal is observed.7

The rest of the paper is organized as follows: Section 2 sets up the framework. Section 3

addresses the question of what the receiver can be persuaded of, studies the comparative statics,

and comments on the sender’s problem. Section 4 illustrates applications. Section 5 extends the

results to the case in which the receiver is endowed with a default model. Section 6 discusses

the related literature. Section 7 concludes. All the proofs can be found in Appendix A.

2 Set-up

Two agents, a sender and a receiver, have utility functions US(a, ω) and UR(a, ω) that depend

on the receiver’s action a ∈ A and the state of the world ω ∈ Ω. They share a common prior

6The sender can induce any posterior by proposing a model ex-post if the receiver has no default model.
This is not always the case ex-ante, as shown in the main theorem. Without a default model, it depends on
the receiver’s prior and sender’s preferences if ex-ante commitment lowers is costly for the sender compared to
ex-post communication. I discuss this in Section 3.3 and provide an example in Section 4.2.

7Ichihashi and Meng (2021) investigate the case in which the sender first designs the signal generating process,
and then provides an interpretation of the observed signal. I do not study what happens if the sender can also
manipulate how the signal is generated, but only the case in which he can convince the receiver that additional
signals could be observed. I show that it is enough to add one of these dummy signals to the list of realizations
the receiver considers possible to achieve full manipulability.
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µ0 ∈ int(∆(Ω)).8 The receiver observes a signal s ∈ S. The state and signal spaces are finite

and fixed. A model m is a map that assigns to each state a distribution of signals conditional

on that state: it specifies πm(s|ω) for every s ∈ S and ω ∈ Ω with
∑

s∈S π
m(s|ω) = 1 for each

ω ∈ Ω. Let M = [∆(S)]Ω be the set of all models. Conditional on signal s, a model m induces

posterior belief µms via Bayes rule. I refer to the likelihood Prm(s) =
∑

ω∈Ω µ0(ω) πm(s|ω) as

the fit of the model m given signal s.

Consider the following timing. Without knowing the signal realization, the sender communicates

a set of models to the receiver; given the observed signal, the receiver adopts a model to update

her prior and chooses an action. In particular, I assume the receiver to act as follows. First,

she adopts the model with the highest fit conditional on the observed signal s among the set of

models M she has been exposed to:

m∗s ∈ arg max
m∈M

Prm(s).

Then, she updates her prior using the adopted model and chooses the action that maximizes

her expected utility:

a∗s ∈ arg max
a∈A

E[UR(a, ω)],

where the expectation is taken with respect to the posterior µ
m∗s
s . When indifferent, the receiver

adopts the model or the action that maximizes the sender’s expected utility.9

In case of misaligned preferences, the sender has incentives to communicate a set of models with

the purpose of influencing the receiver’s action in order to maximize his expected utility rather

than hers. The sender knows the receiver’s preferences and the true model t, specifying the

objective probabilities of signals under the signal generating process. Let µ = (µs)s∈S ∈ [∆(Ω)]S

be a vector of posterior beliefs: it describes the posterior beliefs conditional on each signal

realization. Thus, the value of a vector of posteriors µ equals the sender’s expected utility given

the receiver’s actions at those beliefs calculated using model t:

V (µ) =
∑
s∈S

Prt(s) E
[
US(a∗s, ω)

]
.

Given a set of models M , the receiver’s resulting vector of posterior beliefs is such that for

each signal the posterior is induced by the model with the highest fit, i.e., µM =
(
µ
m∗s
s

)
s∈S

.

Therefore, the sender chooses the set of models M∗ that maximizes his value function at the

resulting vector of posteriors:

M∗ ∈ arg max
M⊆M

V (µM ).

Discussion of Assumptions Before presenting the results, I discuss some of the assumptions

behind this setting.

I start by focusing on the receiver. First, I relax the Bayes rationality of the receiver only

partially: she updates her prior via Bayes rule once she has selected a model. Following

8This assumption is made for simplicity. The extension to heterogeneous priors is straightforward. See
Section 4.2 for an example.

9I further assume that the receiver does not update her prior if she observes a signal that occurs with zero
probability under every model communicated by the sender.
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Schwartzstein and Sunderam (2021), the model adoption occurs via maximum likelihood: once

exposed to a set of models, the receiver adopts the model that fits best the observed data given

her prior.10 The receiver does not come up with every model she is willing to entertain, but

she compares only the models she was exposed to. Importantly, only one model is used to

update beliefs.11 This is in line with Inference to the Best Explanation (Harman, 1965; Lipton,

2003): only the best hypothesis is used to make an inference. However, this theory is agnostic

on what “the best” means. Here, I consider as a measure the goodness of fit.12 A line of re-

search in cognitive psychology argues that hypotheses are supported by the same observations

they are supposed to explain, and the more they explain, the more confidence we give to that

hypothesis (Koehler, 1991; Pennington and Hastie, 1992; Lombrozo and Carey, 2006). Douven

and Schupbach (2015a,b) provide evidence of the importance of explanatory power in updating

and predicting estimates of posterior probabilities.13 Second, I assume the receiver to be näıve.

In particular, the receiver does not know the true model and does not form subjective beliefs

about the possible models. As a result, she cannot anticipate the sender’s value function even

if she knows or can learn about the sender’s preferences. This prevents the receiver from being

strategic about the models she receives. If she could form beliefs about the true model, it would

allow her to learn more about the state directly, ignoring the sender’s proposed models. This

full näıveté assumption is a common starting point in the literature (e.g., Heidhues and Kőszegi,

2018; Eyster, 2019) and it incorporates several motives leading the receiver to underreact to the

sender’s private information and incentives.

The sender’s behavior differs in a two-fold manner from Schwartzstein and Sunderam (2021).

First, the sender communicates models without knowing the signal realization. This allows for

a temporal interpretation: a public signal will be observed by both agents, but the sender has

to provide models before its realization. Also, this assumption can accommodate a private-

information interpretation: the receiver might hold some private information on the state —

the signal — and the sender cannot access it. Second, the sender can communicate as many

models as he wishes. Because he does not know the signal realization, he has incentives to send

multiple models that could be picked up depending on the realization. Note that there is no

need to have more models than the number of signal realizations. This explains why, in the

interim model by Schwartzstein and Sunderam (2021), the authors do not consider multiple

10The literature on belief updating under ambiguity considers a maximum likelihood updating rule, introduced
by Dempster (1967) and Shafer (1976), then axiomatized by Gilboa and Schmeidler (1993). When agents consider
multiple priors over states, they only update the subset of priors that maximizes the probability of the realized
event. The other most common rule for updating in the case of multiple priors is full Bayesian updating: subjects
update prior-by-prior and retain ambiguity in their posteriors. I do not consider multiple priors over states but
multiple models that could be used for updating. In this setting, a recent paper (Frick et al., 2022) shows that
maximum likelihood updating is maximally efficient in learning under ambiguity aversion.

11The “traditional” alternative would have been to assume the receiver holds Bayesian beliefs — not selecting
any model but forming posterior beliefs over models given the signal and priors over models as well. In this case,
her posteriors are calculated as the average of the posteriors given each model weighted by the posterior of each
model given the observed signal.

12I abstract from the reasons this is the case. For example, it might be that the most plausible model is
adopted because people believe what they are prepared to hear, or it might also be that communicated models
are stored in the receiver’s memory and the best-fitted one is the easiest to retrieve (e.g., Bordalo et al., 2017).

13Model selection via maximum likelihood is equivalent to selecting the model with the higher posterior
probability given the signal, starting from a flat prior over proposed models. There is some evidence that people
choose the most probable hypothesis. Simple and more probable explanations are valued (Einhorn and Hogarth,
1986; Thagard, 1989), but in the absence of a simplicity difference, people prefer more probable explanations
(Lombrozo, 2007).
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models provided by the sender — unless the sender wishes to persuade multiple receivers.

3 Ex-Ante Model Persuasion

In this section, I characterize the extent to which the receiver’s belief can be manipulated.

I start with some preliminary results. First, I illustrate the connection between models and

vectors of posterior beliefs. Second, I pin down the trade-off between how well a model can fit

the observed realization and how much a model can move the posterior away from the prior.

Then, I state the main result of the paper and provide a graphical intuition for the binary case.

Last, I discuss some comparative statics and the sender’s problem.

3.1 Preliminaries

To solve the sender’s problem in the Bayesian persuasion literature, it is pivotal to characterize

not only the posteriors the receiver might attain but also with which probabilities these poste-

riors can be induced, i.e., the distribution of the receiver’s posteriors. The relevant constraint

is that, given a prior, each information structure feasible for the sender corresponds to a Bayes-

plausible distribution over posteriors: the expected posterior must be equal to the prior.14 By

contrast, this paper assumes a fixed distribution over the signals induced by the true model t.

Therefore, to solve the sender’s problem, it is enough to study the vectors of posteriors that

the receiver could hold. Once the sender knows what vectors of posteriors he can induce, he

optimizes his objective over this set of feasible vectors of posteriors.

As a first step, I show an equivalent representation between models (information structures with

fixed signal space) and vectors of posteriors (the support of the distribution of posteriors) under

a condition comparable to Bayes-plausibility. That is, I say that a vector of posterior beliefs µ is

Bayes-consistent if the prior µ0 is a convex combination of the posteriors across signals (µs)s∈S .

Let B ⊂ [∆(Ω)]S be the set of all vectors of posteriors that are Bayes-consistent. Also, let µm

be the vector of posteriors such that each posterior is induced by model m. Bayes-consistency

is the only restriction that Bayesian updating imposes on vectors of posteriors.

Lemma 1. For each Bayes-consistent vector of posterior beliefs µ ∈ B there exists a model that

induces µ and each model m induces a Bayes-consistent vector of posterior beliefs µm ∈ B.

Next, I focus on the trade-off between how well a model can fit data and how much a model

can move beliefs. Fix a target posterior µs conditional on a signal s. Define the movement

for posterior µs in state ω as δ(µs(ω)) = µs(ω)
µ0(ω) and the maximal movement for µs as δ̄(µs) =

maxω∈Ω δ(µs(ω)). With this, it is possible to characterize the set of fit levels a model can have

when inducing posterior µs.

Lemma 2. Fix a posterior µs. For every p ∈
[
0, δ̄(µs)

−1
]
, there exists a model inducing µs

with fit Prm(s) = p, and every model inducing µs has fit Prm(s) ∈
[
0, δ̄(µs)

−1
]
.

Intuitively, there is less freedom in terms of fit levels to induce posteriors further from the prior.

Schwartzstein and Sunderam (2021) characterize the upper bound in Lemma 2: conditional on

14There is a recent literature studying the set of feasible joint posterior belief distributions for multiple Bayesian
agents (e.g., Arieli et al., 2020; Morris, 2020; Mathevet et al., 2020) or multiple signals (Levy et al., 2022).
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a signal, the maximal fit for a target posterior coincides with the reciprocal of the maximal

movement. Indeed, any model that leads beliefs to react a lot given a signal realization (higher

movement) cannot fit the data well (lower fit).

3.2 Feasible Vectors of Posterior Beliefs

In this section, I characterize the set of feasible vectors of posteriors that the receiver could hold.

The first result is straightforward and shows that only Bayes-consistent vectors of posterior

beliefs are feasible when a single model is proposed.

Proposition 1 (One Model). If |M | = 1, then the set of feasible vectors of posterior beliefs

equals B.

Next, I consider the case in which the receiver is exposed to many models. This is the main

result of the paper and it shows how the set of feasible vectors of posteriors is characterized by

a simple condition: the sum over signals of the maximal fit levels associated with the posterior

beliefs exceeds one. Then, the characterization follows from Lemma 2, according to which the

maximal fit of a posterior coincides with the reciprocal of the maximal movement for that belief.

Theorem 1 (Many Models). The set of feasible vectors of posterior beliefs is

F =

{
µ ∈ [∆(Ω)]S :

∑
s∈S

δ̄(µs)
-1 ≥ 1

}
.

Allowing for multiple models expands the feasibility set with respect to the case of one model

only.15 As a consequence, vectors of posteriors that are not Bayes-consistent are feasible. There-

fore, with many models, the sender can achieve a vector of posteriors that can be the support

of a distribution of posteriors unattainable with Bayesian persuasion. However, it is not always

the case that all vectors of posteriors are feasible. The characterizing condition can be rewrit-

ten and interpreted as follows: A necessary and sufficient condition for feasibility is that the

harmonic mean of the maximal movement across signals is not higher than the number of signal

realizations, i.e., 
∑
s∈S

δ̄(µs)
-1

|S|


-1

≤ |S|.

This highlights that there is a trade-off in movement across signal realizations: moving a pos-

terior away from the prior restricts how much movement is allowed for posteriors conditional

on other signals. Moreover, the extent to which beliefs can react is overall capped by a bound

determined by the number of signal realizations to be interpreted. Thus, not “anything goes.”

A vector of posterior beliefs is feasible if and only if there exists a set of models such that two

conditions are satisfied. First, each model is tailored to a specific signal realization, inducing

the desired posterior conditional on that signal.16 Second, each model is adopted conditional

15When all posteriors are induced by the same model (equivalent to |M | = 1), the feasibility condition is
satisfied. Notice that

∑
s δ̄(µ

m
s )-1 ≥

∑
s Prm(s) = 1, where for each signal s, δ̄(µms )-1 ≥ Prm(s) by Lemma 2.

16Providing a number of models equal to the number of signals allows maximal belief manipulability. More
models would not enlarge the set because, at most, one model is adopted conditional on each signal realization.
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on the signal it has been tailored to. The latter condition introduces an analog of the incentive

compatibility constraint for models depending on their fit levels across signal realizations. The

proof shows that if a vector satisfies the condition of Theorem 1 then such a set of models exists,

otherwise it cannot. As models compete with each other across realizations, the higher fit a

model has inducing the posterior, the more freedom there is to induce posteriors conditional on

other realizations with other models. Therefore, the maximal fit associated with each posterior

pins down the extent to which each posterior contributes to the vector’s feasibility: if low, the

other posteriors should compensate by being closer to the prior; if high, the other posteriors

could be further away from the prior. In particular, the frontier of the feasibility set — the

furthest vectors of posteriors from the prior that are still feasible — is generated by maximal

overfitting : each tailored model induces the desired posterior with maximal fit conditional on

the target signal. Closer vectors to the prior are always feasible.

3.2.1 Graphical Intuition

This section introduces a graphical approach to this setting in order to provide intuitions for

these results. To do so, I focus on the binary case.

Given the binary state, let the posterior probability of state ω1 identify the posterior beliefs in

the following graphs. The axes represent the posterior attached to ω1 conditional on each signal

realization, and each point in this graph represents a vector of posterior beliefs. I represent the

prior µ0(ω1) = 0.3 as the vector of posteriors such that each posterior equals the prior; that

is, the orange point in all figures. In Figure 1a, the purple area depicts the Bayes-consistent

vectors of posteriors, B: a vector of posteriors is Bayes-consistent if, for each ω, it holds that

either (i) µs1(ω) > µ0(ω) > µs2(ω), or (ii) µs1(ω) < µ0(ω) < µs2(ω). This condition implies

that updating beliefs always in the same direction is impossible. In the binary case, there is

a one-to-one map between Bayes-consistent vectors of posterior beliefs and models.17 Hence,

every point in the purple area corresponds to a model.

Focusing on a model as in Figure 1b, it is possible to observe some of its properties graphically.

To do so, consider the purple line passing through the vector of posteriors induced by that

model (purple point) and the prior (orange point). This is the isofit line associated with the

considered model: all the points on that line correspond to models with the same fit conditional

on each signal.18 The slope of the isofit line can be interpreted as follows: the steeper (flatter)

the line, the higher the fit conditional on s1 (s2). For each level of fit, it is possible to partition

17The only exception is the vector for which the posterior conditional on every signal equals the prior. There
are infinitely many uninformative models (they assign the same distribution of signals conditional on all states)
inducing it. This statement is formalized in Appendix A.

18Formally, an isofit is the set of vectors of posteriors that are induced by models that have the same fit
conditional on every signal realization. For each ϕ ∈ ∆(S), formalize

I(ϕ) =
{
µ ∈ [∆(Ω)]S : ∀ω ∈ Ω, µ0(ω) =

∑
s∈S

ϕsµs(ω)
}
.

In the binary case, consider the Bayes-consistency constraint for ω1 with weights given by the fit levels induced by
model m and re-arranged to µms2(ω1) = µ0(ω1)

Prm(s2)
− Prm(s1)

Prm(s2)
µms1(ω1). All models with the same fit (Prm(s1),Prm(s2))

correspond to points on this line. In this case, two models that have the same fit conditional on one signal also
have the same fit conditional on the other signal. Thus, it is enough to look at the fit conditional on a signal
only.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Graphical intuition for the binary case

B into three subsets: vectors induced by models with the same fit (isofit line), vectors induced

by models with higher fit conditional on s1 (red area), and vectors induced by models with

higher fit conditional on s2 (blue area).

Given the prior, there is a multiplicity of models that induce the same posterior distribution

conditional on a signal with different levels of fit. Consider the target posterior µs1(ω1) =

0.7, the dotted line in Figure 1c. The yellow line corresponds to all the models inducing the

target µs1(ω1): at each point, the fit varies. Among these models, the one with the highest

fit conditional on s2 is the model corresponding to the blue point, lying on the flattest isofit

inducing the target. The model with the maximal fit conditional on s1 is the one corresponding

to the red point: a steeper line cannot induce the target. By Lemma 2, the fit of such a model

given s1 is known: it is
(

max
{

0.7
0.3 ,

0.3
0.7

})-1
= 43%.

In the binary case, a target vector µ is feasible if it is possible to find two models m1 and m2,

respectively, inducing µs1 and µs2 and adopted conditional on s1 and s2. In Figure 1, the target

vector is the black point. Start with a model m1 inducing µs1 (red dot) in Figure 1d. For any

such model, I want to identify the compatible posteriors induced by other models conditional

on s2 if model m1 is adopted conditional on s1. Therefore, focus on the blue area because this

corresponds to models with the higher fit (thus, adopted) conditional on s2 with respect to m1

as in Figure 1b. The compatible posteriors conditional on s2 with respect to m1 are all the y-

coordinates of points in the blue area: the blue line on the y-axis. However, the y-coordinate of

the target vector does not lie in this set. This does not imply that the target vector is unfeasible.

The model m1 I started with did not allow me to induce the target vector of posteriors, whereas

others could. As shown in Figure 1c, many models induce the target posterior conditional on s1
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with different fit levels. In particular, consider the model m1 inducing µs1 with maximal fit in

Figure 1e. I focus on this one because by increasing Prm1(s1), Prm1(s2) decreases, and thus more

models can be adopted conditional on s2. Thus, the range of compatible posterior distributions

conditional on s2 with respect to model m1 expands. Maximally overfitting conditional on s1

identifies the largest set of posteriors conditional on s2 compatible with µs1 . With this m1, the

y-coordinate of the target belongs to the set of compatible posteriors, and thus there exists a

model in the blue area that together with m1 could induce the target. Furthermore, note that

the dotted red line corresponds to the maximal posterior among the compatible ones given µs1 .

The point for which this intersects µs1 — the yellow point in Figure 1f — exemplifies how to

construct the upper frontier of the set of feasible vectors of posteriors. All vectors below that

line (yellow area) are feasible. Also note that all vectors of posteriors on the frontier are such

that the harmonic average of their maximal movement is two, as the number of signals. For

example, the vector of posteriors such that µs1(ω1) = µs2(ω1) = 60% has maximal movement

of two for both realizations.

3.2.2 Comparative Statics

In this section, I study what makes the receiver more vulnerable to persuasion. Generally, not

all vectors of posterior beliefs are feasible. Interestingly, this is not the case when the receiver’s

minimal prior across states is sufficiently high, with respect to the reciprocal of the number of

signals. In this case, the receiver is fully persuadable: any vector of posteriors can be induced.

Proposition 2. If min
ω∈Ω

µ0(ω) ≥ 1
|S| , then all vectors of posterior beliefs are feasible.

The proposition illustrates a simple test to check whether the receiver is fully persuadable. Two

observations follow. First, the more signals, the more manipulability of the receiver’s beliefs.

Tailoring models to specific signals allows more feasible vectors of posteriors but also requires

that models are compatible with each other across signals: the more signals, the less stringent

this condition on the prior is. To exemplify this, I continue the example of Figure 1e. Consider

a model inducing the target posterior 0.7 conditional on signal s1. To leave more freedom

conditional on the other signal, set the fit to the maximum: Prm(s1) = 43%. A model tailoring

the other signal s2 must have a fit higher than Prm(s2) = 57% to be adopted conditional on s2. If

more signals are available, this constraint is less stringent because
∑

s 6=s1 Prm(s) = 57%. Hence,

tailored models for the other signals would have more freedom overall to induce a posterior

further away from the prior. Moreover, with fewer signals than states, the receiver is never fully

persuadable because the condition of Proposition 2 is never satisfied. Therefore, the receiver is

more manipulable in a setting with many signals to be interpreted. Second, the minimal prior

across states contains information regarding the set of feasible vectors of posteriors. To get an

intuition for this, notice that the minimal prior across states is the lower bound for the maximal

fit for any updated posteriors starting from a given prior, i.e., δ̄(µs)
-1 ≥ min

ω∈Ω
µ0(ω) for any µs,

pinning down the lower bound for the sum of maximal fit levels across signals. Also, note that

by increasing the minimal prior over states, the prior beliefs get closer to a uniform distribution.

Hence, one can interpret the minimal prior across states as a measure of the concentration of

beliefs. Putting the pieces together, it holds that the more uniform the prior, the lower the

movement to induce further away posteriors, and the more belief manipulability.
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Figure 2: Frontier of the feasibility set, by prior

Notes: The lighter the color line, the further away from the uniform prior: yellow µ0(ω1) = 15%, orange
µ0(ω1) = 30%, red µ0(ω1) = 45%.

The next result follows from the last observation. If the signals are as many as states, any

vector of posteriors is feasible if the receiver has a uniformly distributed prior across states.

Corollary 1. If |S| ≥ |Ω| and µ0(ω) = 1
|Ω| for every ω ∈ Ω, all vectors of posterior beliefs are

feasible.

A stronger result holds in the binary case. In this special case, the set of feasible vectors of

posteriors can be ordered: the closer the receiver’s prior is to 50-50, the more she can be ma-

nipulated (Figure 2). Without loss of generality, let µ0,ε = (µ0,ε(ω1), µ0,ε(ω2)) =
(

1
2 − ε,

1
2 + ε

)
and Fε the set of the feasible vectors of posteriors with respect to this prior.

Proposition 3 (Binary Case). For ε′ < ε′′, it holds that Fε′′ ⊆ Fε′.

3.3 Sender’s Problem

Given these results, I turn to the sender’s problem. Informed about the receiver’s prior, the

sender knows to what extent he can manipulate her beliefs. Then, he maximizes his value on

the set of feasible vectors of posteriors, knowing the receiver’s preferences and anticipating the

receiver’s optimal action. Optimization is standard, except that the set of feasible vectors of

posteriors could be non-convex, as shown in Figure 1f for the binary case.

Since the receiver is not endowed with a model, she cannot interpret the realized signal without

models provided by the sender. Therefore, I assume that if the sender does not communicate

any model, she does not update her beliefs: she holds µ∅ such that µ∅s = µ0 for each signal s.

The sender benefits from persuasion through models if there exists a feasible vector of posterior

beliefs µ ∈ F such that its value is higher than the value of the prior: V (µ) ≥ V (µ∅).

The sender faces two main restrictions in choosing his communication strategy. First, unlike the

literature on Bayesian persuasion, the signal space is fixed and the sender cannot manipulate it.

This is a crucial assumption and it restricts the sender’s communications only to interpretations

of observable events, s ∈ S. If this were not the case and the sender could add dummy signals,

he could persuade the receiver to hold any beliefs in the original space. The intuition is that if

the receiver believes that other signals proposed by the sender were also observable with S′ ⊃ S,

the sender could leverage those signals that cannot be realized to manipulate beliefs further.

Indeed, one dummy signal is enough to guarantee full manipulability.
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Proposition 4. Adding a dummy signal s0 /∈ S to the signal space S′ = S ∪ {s0}, any vector

of posteriors on the original signal space µ ∈ [∆(Ω)]S can be induced.

Second, the sender provides models without knowing the signal realization. What is the impact

of this assumption on the sender’s expected utility? Knowing which signal the receiver observes

allows the sender to communicate a tailored model inducing the desired posterior. Avoiding

competition among models across signal realizations, he could induce any vector of posteriors.19

The cost of committing ex-ante to models equals the gap between the unconstrained maximal

sender’s value over any vector of posteriors and the maximal sender’s value over the feasible

vectors of posteriors:

∆ = max
µ∈[∆(Ω)]S

V (µ)︸ ︷︷ ︸
no commitment

− max
µ∈F

V (µ)︸ ︷︷ ︸
commitment

≥ 0.

When all vectors of posteriors are feasible, the sender cannot gain from communicating models

ex-post. However, the commitment cost is positive if the unconstrained maximum is unfeasible.

In particular, this measure captures how much the sender is willing to pay to learn the data

available to the receiver. It can be used to comment on the value of microtargeting.20 Knowing

the private information available to the receiver allows the sender to tailor models perfectly. I

discuss an example of this in Section 4.2.

4 Applications

This section discusses several applications. The first formalizes the political example outlined

in the introduction and sheds light on the polarizing consequences of conflicting models. Then,

I provide suggestive evidence of this mechanism. Second, a financial application illustrates the

sender’s optimization problem in detail. The third application discusses self-persuasion.

4.1 Firehose of Falsehood

Firehose of falsehood is a propaganda technique based on a large number of possibly contra-

dictory and mutually inconsistent messages. It was defined by Paul and Matthews (2016) to

describe modern Russian propaganda.21 The growing interest in understanding fake news re-

vealed that people have a hard time distinguishing true and false stories: fake news is widely

shared and believed (Allcott and Gentzkow, 2017).

Building on the political example presented in the introduction, I illustrate why it is in the

19This is not the case if the receiver has a default model. In Section 5, I discuss and study the sender’s cost
of commitment if the receiver has a default model.

20This is a well-established practice in marketing: analyzing online information on potential customers to create
and convey the most effective message. As a result, different ads are shown to different groups of consumers.
For an example, see https://themarkup.org/news/2021/04/13/how-facebooks-ad-system-lets-companies-

talk-out-of-both-sides-of-their-mouths.
21The authors describe the distinct features of this phenomenon: (i) high number of channels and messages, (ii)

lack of commitment to consistency or objective reality, and (iii) rapid, continuous, and repetitive communication.
I focus on the first two dimensions.
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interest of the sender to communicate conflicting models.22,23 While this strategy is particu-

larly successful for the persuader in manipulating a target receiver, it could lead to extreme

polarization in beliefs and actions in the presence of receivers with sufficiently different priors.

(a) µ0(B) = 70% (b) µ0(B) = 30%

Figure 3: Firehose of falsehood, by voter’s prior

Notes: The orange point corresponds to the voter’s prior; the yellow area represents the set of feasible vectors
of posteriors; the red and the blue points are the vector of posteriors induced by models f and c, respectively,
while the purple point is the resulting receiver’s vector of posteriors.

Politician Bob is running for the presidency. He wants to be recognized as president by part of

the voters regardless of the reported election outcomes. To make sure of that, he spreads two

different models about the reliability of the election system. Let the state space be {B,¬B},
where B is the event in which Bob is the legitimate winner of the election, and the signal

state be {W,¬W}, where W is the event in which Bob is reported as the winner. Each voter

recognizes Bob as president if, having observed the election outcome, she believes that Bob is

the legitimate winner with a probability higher than 50%. The politician knows that mistakes

in vote counting are very rare. To maintain credibility, this model is communicated: the system

is fair with high precision, πf (W |B) = 99% and πf (W |¬B) = 1%. In addition, he spreads a

conspiracy theory, according to which if he were to win, votes would not be truthfully reported:

πc(W |B) = 1%. Otherwise, the votes are counted randomly: πc(W |¬B) = 50%.

For simplicity, assume that voters expect Bob to be fairly elected with either high probability

µ0(B) = 70% or low probability µ0(B) = 30%. Figure 3 shows the vectors of posteriors

induced by the fair model (red point) and conspiracy theory (blue point), by prior. It is enough

to compare the slopes of isofit lines associated with the available models to understand which

model is adopted conditional on each signal. For example, consider a voter that initially expects

Bob to win fairly with high probability (Figure 3a). The red point lies on the steeper isofit

line and the blue point lies on the flatter isofit line: the voter would adopt f conditional on

W and c conditional on ¬W , resulting in µ =
(
µfW , µ

c
¬W

)
(purple point). This type of voter

always recognizes Bob as the legitimate president regardless of the election outcome. Thus, Bob

achieves his goal of being recognized as president by at least part of the voters. However, this

22For simplicity of exposition, I describe this strategy as adopted by a single politician. One can imagine
different members of the same party implementing the same strategy in a coordinated manner.

23Interestingly, a study by Reich and Tormala (2013) argues that contradicting oneself — initially supporting
something and then later switching to something else — might offer a persuasive advantage over both one-time
opinions (supporting something once) and repeated consistent opinions (initially supporting something and then
later supporting it again). The effect is moderated by trust in the source and it disappears if the conflicting
opinions come from different sources.
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has repercussions on other type of voters. Voters that expect Bob to win with low probability

never recognize him as president (Figure 3b).

Interestingly, for different priors, the same pair of models not only induces opposite actions

conditional on both signals, but also polarizes beliefs. Indeed, whenever µ0(B) ≥ 33%, the

voter is persuaded to support Bob regardless of the election outcome, holding a strong belief in

his legitimacy; the same models persuade a voter with µ0(B) < 33% to never support Bob as

president, always believing him to be an illegitimate president.

4.1.1 Inevitable Polarization

The previous example illustrates how exposure to conflicting models might be a strong driver

of inevitable polarization in a population of heterogeneous agents. It is possible to generalize

this result for the binary setting.

Two models m,m′ are conflicting if one is such that πm(s1|ω1) > πm(s1|ω2) and the other one

is such that πm
′
(s1|ω2) > πm

′
(s1|ω1). In other words, to be conflicting each model must point

to a different state given each signal.

The following result shows that conflicting models always lead to belief polarization.

Proposition 5 (Binary Case, Polarization). For each pair of conflicting models, there exists a

threshold p such that, for every signal s, it holds that (i) µs(ω1) < µ0(ω1) if µ0(ω1) < p, and

(ii) µs(ω1) > µ0(ω1) if µ0(ω1) > p.

The intuition is the following. Any pair of conflicting models induces a vector of posteriors that is

not Bayes-consistent, with both posteriors higher or lower than the prior. This follows from the

fact that each signal triggers the adoption of a different model. Because models are conflicting,

the updating goes always in the same direction. Crucially, the prior drives in which direction the

posteriors are stretched: there is a threshold such that receivers with prior higher (lower) than

the threshold would hold extreme high (low) posteriors regardless of the signal realization.24

In the presence of receivers with priors higher and lower than the threshold, there cannot be

consensus on the interpretation of any event and posterior beliefs always diverge. This is in

stark contrast to models with Bayesian agents with heterogeneous priors. Baliga et al. (2013)

show that beliefs do not move in opposite directions even when agents have different priors if

they agree on the likelihood functions and update using Bayes rule.

From a broader perspective, there are different ways to measure polarization: ideological po-

larization (the extent to which the electorate has divergent beliefs on ideological issues, e.g.,

Dixit and Weibull, 2007), partisan sorting (the extent to which voters identify with a party, e.g.,

Levendusky, 2009; Mason, 2015), and affective polarization (the extent to which party members

dislike members of other parties, e.g., Iyengar et al., 2019). I focus on the first: posteriors on

states shift in different directions depending on the prior. This type of polarization has been

documented for many decades. In the ground-breaking paper by Lord et al. (1979) and similar

subsequent studies (e.g., Darley and Gross, 1983; Plous, 1991; Russo et al., 1998), subjects were

24The proposition is silent on the indifference case where the prior equals the threshold. In that particular
case, the two conflicting models correspond on the same isofit line. Thus, it could be the case that posteriors are
either Bayes-consistent or not, depending on the tie-breaking rule.
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asked to read the same study relative to a controversial issue (e.g., capital punishment, nuclear

technology), then judge whether it provides evidence for or against the issue, and finally report

how the study changed their beliefs. They all find that participants’ final attitudes were either

more in favor if initially favorable to the issue, or less in favor if initially opposed to the issue.

Several mechanisms have been proposed in the literature to understand the determinants of

this phenomenon. Often polarization is associated with confirmation bias, formalized for the

first time by Rabin and Schrag (1999). They assume agents misinterpret new information as

supportive of current beliefs with an exogenous probability. A recent paper by Fryer et al.

(2019) builds on this, assuming a similar distortion only to signals open to interpretation, and

provides evidence of their predictions. They directly assume the prior to be driving the direction

of polarization, while in Rabin and Schrag (1999) this role is assigned to early observed signals

as agents start with a uniform prior over states. Baliga et al. (2013) provide an explanation for

polarization based on ambiguity aversion, in which agents hedge against uncertainty by making

predictions in different directions depending on the prior after intermediate signals. Other

papers illustrate how polarization arises with Bayesian updating in the presence of additional

relevant features, such as high dimensionality of signal space compared to state space (Andreoni

and Mylovanov, 2012) or private signals on the interpretation of evidence (Benôıt and Dubra,

2019). Recent papers discuss how mistakes in source credibility could amplify polarization.

Cheng and Hsiaw (2022) investigate belief distortion due to double-using the data to update

beliefs on the states while also updating beliefs on source accuracy. Also, this mechanism can

lead agents to disagree on how to interpret the same data. Gentzkow et al. (2021) shows how

a small bias in data perception due to ideological preferences can cause divergent beliefs about

both the state and the source precision, even with Bayesian updating. Unlike these papers, I

contribute to this literature on polarization by highlighting why such divergence in beliefs could

happen given a strategic supply of conflicting models, both when agents with different priors

observe the same outcome and when agents with similar priors observe different outcomes.

4.1.2 The Case of the 2020 US Presidential Election

The debate on the fairness of the 2020 US election fractured the American electorate. No evi-

dence was found supporting the claims of widespread voter fraud in the election, yet competing

narratives on dysfunctional elections were broadly diffused. These allegations circulated for the

entire election campaign. In particular, the incumbent president at the time, Donald Trump,

cast doubts on the election system, especially on the mail-in ballots, well ahead of the election

results. When ballots were tabulated, some voters adopted these narratives to interpret the

election outcome, concluding the election to be rigged.

The preemptive provision of an alternative narrative with respect to the conventional idea that

the election system is fair fits well with the application discussed in the previous section. In

what follows, I discuss some suggestive evidence of the mechanism I formalized above: conflicting

models drive polarization in a population of heterogeneous voters. In particular, when exposed

to conflicting models: (i) voters with different initial beliefs adopt different models on the

election system once the outcome is observed, and (ii) voters with the same initial belief adopt

different models if they observe different outcomes. I rely on insights on the 2020 US election
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provided by Persily and Stewart (2021) to discuss stylized facts in line with these two predictions.

To allow comparability between the setting of this paper and the American bipartisan system,

I assume that each voter expects his partisan candidate to win; that is, before the election

Republicans expect Donald Trump to win and Democrats expect Joe Biden to win. On average,

this assumption is verified: at the end of October 2020, the expected winner of the presidential

election was Donald Trump for 85% of Republicans and Joe Biden for 73% of Democrats.25,26

Figure 4 shows the confidence in accurate vote count over time. Persily and Stewart (2021)

report that before the election, around half of poll respondents expressed confidence that their

own vote would be counted accurately, with Democrats slightly more confident than Republi-

cans. After the release of the election outcome, the aggregate measure remained unchanged but

an extreme partisan polarization occurred: the gap between Democrats and Republicans went

from 10.9% to 51.7%.27 This suggests that voters with different priors adopt different models

once the election outcome is observed: after the election, Democrats adopt the narrative claim-

ing the election system to be fair, while Republicans adopt an alternative story questioning the

integrity of the process. This effect is not unique to the 2020 election, and it is also known

as the “winners-losers effect”: after the election, supporters of the losing candidate tend to

question the legitimacy of the election, while supporters of the winning candidate tend to gain

confidence in the election system (Sances and Stewart, 2015; Sinclair et al., 2018). However,

the 2020 gap is much wider than in previous elections (Persily and Stewart, 2021). A potential

explanation is the disproportionate spread of distrustful narratives during the 2020 election

campaign compared to previous elections.

Suggestive evidence about the second prediction can be found by looking at how voters’ confi-

dence in state elections changes depending on the state’s reported election outcome. Figure 5

reports data on the confidence in state elections by the percentage of Trump’s share of votes.

Republicans mostly distrust the accuracy of the state elections if they live in states where

Trump barely lost. The discontinuity in confidence vote between Republicans from states in

which Trump barely lost, and those from states in which Trump barely won is stark and larger

than in previous elections (Clark and Stewart, 2021). This gap supports the idea that voters

with similar initial beliefs adopt different models if they observe different realizations. This pat-

tern would be difficult to explain without invoking the idea that they are exposed to conflicting

models. Indeed, the same graph for Democrats barely exhibits a discontinuity. Since most of

these alternative narratives about the election accuracy were right-leaning, it is reasonable to

assume that Democrats discard them. People tend to ignore messages inconsistent with their

view or coming from sources perceived as untrustworthy (Graber, 1984).

25See Appendix B for more details about the distributions of priors.
26This pattern in priors is consistent with motivated beliefs or wishful thinking: voters wish their partisan

candidate to win, influencing their expectations. I assume these motives might affect initial beliefs but not model
selection or the updating procedure. A proper test of this paper should account for these confounding forces.

27The same pattern can be observed regarding a similar question: “How much confidence do you have that
the 2020 presidential election [will be held/was held] fairly?”. Along this measure, the pre-election gap was 15%,
while the post-election one was 72.6%. The figure is reported in Appendix B.
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Figure 4: Accuracy of vote count (Persily and Stewart, 2021)

Notes: The y-axis shows the percentage answering “a great deal” or “quite a bit” in response to the question “How
much confidence do you have that your vote in the 2020 presidential election [will be/was] counted accurately?”
Source: Economist/YouGov poll, 2020.

(a) Republicans (b) Democrats

Figure 5: Confidence in vote count in state elections (Persily and Stewart, 2021)

Notes: The y-axis shows the percentage answering “very confident” or “somewhat confident” in response to the
question “How confident are you that votes in [state of residence] were counted as voters intended?”
Source: Survey of the Performance of American Elections (SPAE), November 2020.
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4.2 Financial Advice

Next, I illustrate the optimization problem for a financial advisor who wants to persuade in-

vestors to make a specific investment. It is well-known that commissions on investments could

lead to a conflict of interest for the advisor. I consider the case in which the advisor knows

that the investors’ past financial experience influences their beliefs about the quality of new

investments.28 However, the advisor does not have access to this piece of private information.

Nonetheless, he has the incentive to persuade the investor to invest as much as possible.

To manipulate the investor, the advisor can propose different ways to predict future returns

based on past returns. In finance, two important alternatives are that returns can exhibit pre-

dictable mean reversion or predictable continuation. When returns exhibit predictable mean

reversion, high past returns predict low future returns, and a contrarian strategy — selling

following high returns — is profitable. When returns exhibit predictable continuation or mo-

mentum, high past returns predict high future returns, and a return chasing — buying follow-

ing high returns — is profitable. Both phenomena have been empirically well-documented in

finance, with Fama and French (1992) and Lakonishok et al. (1994) finding predictable mean

reversion and Jegadeesh and Titman (1993) finding momentum in US stocks. Professionals rely

on empirical measures to detect these patterns and choose the most effective trading strategy.

Still, inexperienced investors might interpret past financial performance through the strategy

that resonates best with their initial beliefs. The advisor can use simplified versions of these the-

ories to his advantage. As shown formally in the following example, an investor with favorable

expectations toward the advisor-preferred asset will always fully invest in that asset because

any past data trigger the adoption of the most optimistic model in terms of future performance.

However, if the investor is pessimistic about the advisor-preferred asset, communicating these

two models is counterproductive, and the advisor needs to adjust his communication.

I discuss these insights in the context of choosing a hedging strategy. Hedging aims to limit

the risk of uncertain events on financial assets. Usually, it involves diversification in offsetting

or opposite positions. Formally, each investor has to allocate one unit of endowment over two

possible outcomes, Ω = {N,¬N}, where N is the event of normal conditions and ¬N is the event

that extreme or catastrophic circumstances occur, e.g., financial crisis or fluctuations of foreign

currency in the economic domain, or flood or drought as extreme weather events. This results

in the choice of α = (αN , α¬N ) with αN + α¬N = 1. All investors have the same initial beliefs

and I consider two cases: optimistic investors expecting extreme conditions with a probability

of 30%, and pessimistic investors expecting extreme conditions with a probability of 70%. Also,

each investor had a previous experience either with normal conditions (good experience, G)

or with extreme conditions (bad experience, B) and they try to understand how this previous

experience impacts the future one. Assuming a logarithmic utility over the outcomes, the

investor’s expected utility based on her posterior µs is E[UR(α)] =
∑

ω∈{N,¬N} µs(ω) log(αω).

The investor’s optimal action α∗ is to allocate a proportion of the endowment equal to the

corresponding posterior α∗ω = µs(ω) for each outcome ω.

The financial advisor receives a commission rω proportional to the receiver’s allocation on

28There is empirical evidence that personal experiences have a lasting impact on beliefs and behavior, such as
how having lived through a depression affects stock market participation (Malmendier and Nagel, 2011).
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outcome ω, i.e., US(α) = rN αN + r¬N α¬N . Assuming rN > r¬N = 0, his value function is

V (µ) =
∑

s∈{G,B} Prt(s) rN µs(N). The sender expects normal conditions with probability of

40%. I assume the sender to know the investors’ prior, but not their private information. The

sender knows the true model where a positive past experience positively (negatively) correlates

with the success (failure) of the investment: πt(G|N) = 75% and πt(G|¬N) = 25%. Given

this, he expects investors with past good experience with a probability of 45% and with a past

negative experience with a probability of 55%.

Figure 6 shows the financial advisor’s indifference curves plotted on the feasible vectors of

posteriors given the investors’ prior. The darker the colored area, the higher the advisor’s

expected utility. Notice that the advisor’s indifference curves are driven by the true model, his

prior, and his incentives, on top of the investors’ prior and incentives.

Consider the optimistic investors (Figure 6a). The financial advisor does not want to discard the

investors’ experiences as irrelevant. Otherwise, the investors’ beliefs would remain at the prior

with an investment of αN = 70%. Using multiple models, the advisor can attain a higher value.

The highest value for the advisor is achieved at the top-right corner, where an optimistic investor

always expects normal conditions and never hedges against extreme circumstances. Intuitively,

this means that the advisor can leverage any past experience of the investor and always move

her beliefs in the advantageous direction. He needs two models to achieve that. One option is to

expose the investors to the following pair of models: (1) model m1 suggesting a perfect positive

correlation between past and future conditions, i.e., πm1(G|N) = πm1(B|¬N) = 1 (red point),

and (ii) model m2 suggesting a perfect negative correlation between past and future conditions,

i.e., πm2(B|N) = πm2(G|¬N) = 1 (blue point). These can be read as simplified versions of

the momentum (“early success predicts long-run success”) and mean reversion (“what goes

down goes up”). Because of their optimistic initial beliefs, investors adopt the first given a

good experience and the second given a bad experience. As a result, they never hedge against

adverse events.

(a) µ0(N) = 70%, optimized (b) µ0(N) = 30%, not optimized (c) µ0(N) = 30%, optimized

Figure 6: Financial advice, by investors’ prior and advisor’s communication

Notes: The financial advisor’s value is illustrated for rN = 1; the darker the colored area, the higher the sender’s
expected utility; the orange point is the investors’ prior and the yellow point is the advisor’s vector of posteriors
induced by his prior and true model; the red and the blue points are the vector of posteriors induced by models
m1 and m2, respectively, while the purple point is the resulting vector of posteriors given these models.

Manipulating a pessimistic investor is not that easy. First, full investment is not attainable

with pessimistic investors. The vector of posteriors in the top-right corner is not feasible given
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their prior (Figure 6b and 6c). Second, communicating the same pair of models tailored to

the optimistic investors to the pessimistic ones is self-defeating. A pessimistic investor always

adopts the most pessimistic model — model m1 given a negative experience and model m2

given a positive experience — and never invests in the advisor-preferred outcome (Figure 6b).

With a pessimistic investor, the maximal value the advisor can achieve is attained at µ∗ =

((0.43, 0.57), (0, 1)) at the right-top kink (Figure 6c). The optimal communication strategy is to

entertain two models: (i) model m1 such that πm1(B|N) = 0 and πm1(G|¬N) = 0.57, inducing

(0, 0.43) (red point), and (ii) model m2 as defined above for the optimistic investors, inducing

(0, 1) (blue point). According to model m1, a bad experience is a perfectly revealing signal

of extreme conditions. In contrast, a past positive experience is indefinite news. This model

encourages only investors with a positive experience to have a positive αN , and, indeed, it is

tailored to those. Again, model m2 is an oversimplified version of the mean reversion, which

pushes investors with a bad experience to invest the whole endowment in the advisor-preferred

outcome. Note that since the first-best outcome of convincing all pessimistic investors to invest

in outcome N fully is not attainable, the advisor shifts to the second-best: convincing the largest

group of investors (the ones with bad experiences) to set αN = 100% while increasing αN for

the other group (the ones with good experiences) as much as possible.

How much would the financial advisor be willing to pay to know the investors’ experience? This

information would allow the advisor to perfectly target each group of investors with a tailored

model to convince them to invest in his preferred outcome fully, inducing µ̄ = ((1, 0), (1, 0))

(right-upper corner in all figures). With pessimistic investors, µ̄ is unfeasible. Therefore, the

cost of commitment is ∆ = V (µ̄) − V (µ∗) = 74%rN . In contrast, with optimistic investors

∆ = 0 because the sender can always achieve his maximal payoff.

4.3 Self-Persuasion

This paper can shed light on intra-personal phenomena as well. In this section, I contribute

to the literature on motivated beliefs, discussing how an agent could distort her own beliefs

by manipulating the perceived informativeness of observable signals.29 I consider a multiple-

selves setting, where the conscious mind (receiver) demands the unconscious one (sender) to

supply models. This proposed mechanism to achieve self-serving beliefs can deliver the classic

implications of this literature, but it also provides a bound on belief distortion.

Confirmation bias can emerge because the agent initially keeps signals open to many favorable

interpretations. This could be the case of a student who subconsciously likes to think she is

good at school and thus leaves the informativeness of grades open to two interpretations: grades

are a good measure of own ability, or grades are based on luck. Once she observes the grade,

she wants to form accurate beliefs to decide how much to study for the next test. However, she

always keeps high confidence in her abilities because she expects to be good at school. This

occurs because she adopts the model according to which grades are informative after a good

grade, but she believes grades do not convey much information after a bad grade.

29Papers on motivated beliefs conjecture different sources of motivations or different channels through which
beliefs are distorted, e.g., via direct utility (e.g., Köszegi, 2006; Brunnermeier and Parker, 2005) or via instru-
mental value associated with the beliefs (e.g., Bénabou and Tirole, 2002). For a survey, see Bénabou (2015).
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Depending on the agent’s subconscious preferences, beliefs might be distorted in any direction.

The previous example assumes opposing goals for the sender and the receiver, such as higher

self-confidence and accuracy. To better compare aligned and misaligned preferences, the next

example focuses on a setting where there is a variable controlling the degree of misalignment

of incentives among the parties. Building on the motivation problem of Bénabou and Tirole

(2002), I explore a multiple-selves setting in which an agent distorts her own interpretations of

signals to offset her time-inconsistent preferences and commit to a costly task.

The agent can have high (H) or low (L) abilities. She receives either a good (G) or a bad (B)

signal. After observing feedback at t = 1, she decides whether to take an action with disutility

c that, with high abilities, would yield benefit v at t = 2. The agent at t = 0 (before the signal)

acts as the sender, choosing potential interpretations of the future signals, while the receiver is

the agent at t = 1 (after the signal). Because the agent has quasi-hyperbolic discounting (e.g.,

Laibson, 1997; O’Donoghue and Rabin, 1999), time inconsistency leads to misaligned incentives:

at t = 0, both the cost and the benefit are in the future and present bias does not undermine

the choice to act, unlike at t = 1. After the signal, it is optimal to take the costly action if the

beliefs given the signal are higher than c
βδv , where δ ≤ 1 is the discount factor and β > 0 is the

present bias. Instead, before the signal, acting is optimal if the updated belief is higher than
c
δv , which is lower than the relevant threshold at t = 1 if she suffers from present bias, e.g.,

β < 1.30 The agent might have the incentives to distort her own interpretations of signals to

avoid a future lack of willpower.

(a) No Present bias (b) Present bias

Figure 7: Motivated beliefs, by present bias

Notes: The example is parametrized as c = 4, v = 10, δ = 0.99, and β = 0.8; the darker the colored area, the
higher the sender’s expected utility; the orange point is the prior and the yellow point is the sender’s vector of
posteriors induced by the true model.

Consider an agent that initially believes to have high abilities with a probability of 70%. Signals

are quite accurate, πt(G|H) = πt(B|L) = 75%. Taking the costly action is always optimal at

her initial beliefs and when she does not suffer from present bias. Updating her prior using

the true model maximizes her ex-ante expected payoff (Figure 7a). She does not distort her

beliefs in case of aligned incentives over time. However, self-deception could be beneficial in the

case of sufficiently severe present bias (Figure 7b). Before the signal, she anticipates that the

30To see how these thresholds were derived, let a ∈ {0, 1} be the action. At t = 1, taking the action given
signal s leads to U1(1) = −c+ µs(H) βδv, while no action leads to U1(0) = 0. At t = 0, the utility of taking the
action is U0(1) = βδ

(
− c+ µts(H) δv

)
, while U0(0) = 0.
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imminent cost of the action will be more salient than the future reward at the moment of the

decision. Thus, conditional on the bad signal, confidence in her abilities will not be high enough

to act. She overcomes this by distorting the perceived informativeness of upcoming signals —

either discarding the signals as uninformative or believing only the good signal to be accurate

enough. Belief manipulation allows her to stay motivated as in Bénabou and Tirole (2002),

but through a different mechanism — manipulating how she interprets feedback rather than

assuming memory loss or inattention.

5 Extension: Default Model

So far I assumed the receiver only considers models proposed by the sender. In this section, I

allow the receiver to initially hold a model, hereafter called the default model : she also considers

her default model on top of the models she is exposed to. This is a natural and realistic extension,

as often individuals bring ways of interpreting data either generated on their own or provided

by others in the past. I show how a default model restricts which beliefs the sender can induce.

5.1 Feasible Vectors of Posterior Beliefs with a Default Model

Assume that the receiver is endowed with a default model d known by the sender. The set-

up is otherwise the same as in Section 2. The receiver adopts the model with the highest fit

conditional on the observed signal s among the set of models M she has been exposed to and

her default model: m∗s ∈ arg maxm∈M∪{d} Prm(s).

The following theorem characterizes the set of feasible vectors of posteriors in the presence of a

default model.

Theorem 2 (Default, Many Models). The set of feasible vectors of posterior beliefs is

Fd =
{
µ ∈ [∆(Ω)]S : ∀s ∈ S, δ̄(µs)-1 ≥ Prd(s)

}
.

The proposed models compete not only with each other but also with the receiver’s default

model given each signal realization: the better the fit of the default model given a signal, the

less the sender can move beliefs given that signal.

Interestingly, the presence of a default model eliminates the cost of ex-ante commitment for the

sender. While, in the absence of a default model, every posterior is feasible when the sender

can communicate a model knowing the signal, this is not the case if the receiver is endowed

with a default model. Proposition 1 of Schwartzstein and Sunderam (2021) characterizes the

feasible posterior beliefs in this setting. Given signal s, the posterior µs can be induced if

δ̄(µs)
-1 ≥ Prd(s). Theorem 2 generalizes this result for vectors of posteriors for the ex-ante stage.

It shows that providing multiple models without knowing the signal (ex-ante) guarantees to

induce any posterior achievable by communicating a model after observing the signal realization

(ex-post). Ex-ante commitment does not prevent the sender from attaining the same expected

utility he would get for each signal realization with ex-post communication. Given a default

model d, the sender’s cost of ex-ante commitment is the gap between the maximal sender’s value
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(a) (b) (c)

Figure 8: Graphical intuition of Theorem 2 and Proposition 6

over the ex-post feasible vectors of posteriors and the maximal sender’s value over the ex-ante

feasible vectors of posteriors:

∆d = max
µ∈post-Fd

V (µ)︸ ︷︷ ︸
no commitment

− max
µ∈Fd

V (µ)︸ ︷︷ ︸
commitment

,

where post-Fd = {µ ∈ [∆(Ω)]S : ∀s ∈ S, ω ∈ Ω, µ0(ω)
µs(ω) ≤ Prd(s)}.

Corollary 2. With a default model, ex-ante commitment does not restrict the sender’s value:

∆d = 0.

Note that this corollary does not imply that the sender should communicate ex-ante the same

set of models that he would find optimal ex-post for each signal. Doing so could be self-defeating

in some cases. With a binary signal, the optimal ex-post models always work ex-ante. To see

this, consider any two tailored models, m1 for s1 and m2 for s2. It is enough to notice that

Prm1(s1) ≥ Prm2(s1) implies Prm2(s2) ≥ Prm1(s2). However, the sender might need extra care

in choosing which models to communicate if there are more than two signals.

I conclude this section by discussing how the default model restricts the belief manipulability

of the receiver. The constraint in Theorem 2 is tighter than in Theorem 1. To see this, take

µ ∈ Fd. For every signal s it holds that

δ̄(µs)
-1 ≥ Prd(s) = 1−

∑
s′ 6=s

Prd(s) ≥ 1−
∑
s′ 6=s

δ̄(µs′)
-1,

satisfying the condition of Theorem 1.

In fact, the two theorems are closely related: the set of feasible vectors of posteriors in the

absence of a default model (Theorem 1) is the union of the sets of feasible vectors of posteriors

with a default model for all default models.

Proposition 6. ⋃
d∈M

Fd = F .

Figure 8 provides a graphical intuition of these results for the binary case. Consider a default

model corresponding to the vector of posteriors µd depicted by the purple point in Figure 8a.
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Given this, the red area corresponds to models with a higher fit conditional on s1, and the

blue area corresponds to models with a higher fit conditional on s2. Thus, the compatible

posterior distributions conditional on s1 and the compatible posterior distributions conditional

on s2 are, respectively, the ones on the red line and the blue line in Figure 8a. The feasible

vectors of posteriors are the ones in the yellow area in Figure 8b. The figure also clarifies why

all the default models with the same fit levels — corresponding to that same isofit line (purple)

— induce the same set of feasible vectors of posteriors. Figure 8c helps build intuition for

Proposition 6. The yellow line corresponds to the upper frontier of the feasible set of posteriors

for a receiver without a default model, while the colorful areas correspond to feasible sets of

posteriors for a receiver with default models of different fit levels (given signal s1: 35% red, 50%

blue, and 65% green).

5.2 Merchants of Doubt

“Doubt is our product, since it is the best means of competing with the ‘body of fact’ that exists

in the minds of the general public. It is also the means of establishing a controversy.”

— Cigarette Executive (1969)

“Victory will be achieved when average citizens understand uncertainties in climate science.”

— Internal memo by The American Petroleum Institute (1998)

The strategic communication of an alternative model with respect to a commonly shared one

might be used to deceive the public. This strategy was used by the tobacco industry and

oil companies to challenge a well-established way of looking at the scientific evidence and to

manufacture uncertainty on issues like the health effects of smoking and climate change (e.g.,

Michaels, 2008; Oreskes and Conway, 2011). These so-called “merchants of doubt” established

a trustworthy presence in academia and media to discredit peer-reviewed articles (e.g., blaming

other factors, false positive results). Their aim was to delay regulations, defeat delegations,

and plant doubt in the population. Ultimately, they diluted consensus, despite the scientific

community having no doubt. This strategy guaranteed that even with new evidence emerging

over time, the general public had already been exposed to competing ways of interpreting

new facts and found them worthy of consideration. The following example illustrates how a

competing model leads to polarization even when the population initially shared the same view.

(a) µ0(I) = 70% (b) µ0(I) = 30%

Figure 9: Merchants of doubt, by agent’s prior
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Consider two states {I,¬I}, where I is the event that the issue is real, e.g., smoking causes

cancer. New evidence emerges, either in favor of the issues (E) or not (¬E). By default,

individuals trust science: favorable evidence means the issue is confirmed, and vice versa if

unfavorable. Formally, πd(E|I) = πd(¬E|¬I) = 99% (blue point).

A lobby wants to strategically challenge this shared model in the population to induce disagree-

ment on the issue. Even if agents all start with the same model, their prior plays an important

role in determining the set of feasible vectors of posteriors. Figure 9 shows the feasible vectors

for two different levels of prior: either supportive agents with Pr(I) = 70% or skeptical agents

with Pr(I) = 30%. Assume that the lobby’s claim is that, if the issue is true, evidence emerges

randomly (πm(E|I) = 50%), but there is a high chance of false positive if the issue is not true

because science searches for evidence in that direction (πm(E|¬I) = 70%). The vector of pos-

teriors induced by this model corresponds to the red point. Once exposed to both models, the

resulting posteriors vector corresponds to the purple point.

The default model induces a vector of posteriors almost identical for all agents. However, the

sets of feasible vectors differ drastically. As a result, introducing an alternative model leads to

diverging beliefs regardless of the evidence. If initially doubtful about the issue, any piece of

evidence makes agents more reluctant to believe the issue is real (Figure 9b). By contrast, agents

initially expecting the issue to be real become even more confident (Figure 9a). Strategically

introducing a conflicting model promotes doubt among agents with different initial beliefs.

Sharing the same default model does not prevent polarization.

6 Relationship to the Literature

This paper mostly contributes to three strands of literature. First, it contributes to the litera-

ture on narratives in economics. Second, it contributes to the rich literature on persuasion in

economic theory. Also, it relates to the important literature on biased beliefs.

Narratives Recently, there has been an effort to incorporate narratives in economics, start-

ing with Shiller (2017, 2019). The present paper builds on the formalization of narratives as

models introduced by Schwartzstein and Sunderam (2021). They investigate what the receiver

could be persuaded of when the sender can communicate an alternative model after the release

of public data. A persuasive model is one that better fits the observed data with respect to

the receiver’s default model.31 I adopt this model selection rule and build on their framework,

but investigate the strategic provisions on models before the signal realization. In Section 5,

I provide a direct comparison and discussion of the effect of this ex-ante commitment for the

sender. Recent papers build on this notion of narratives and assume that best-fitted models

are adopted. Ichihashi and Meng (2021) sequentially combine Bayesian and model persua-

sion. They study a persuader who first designs and interprets information to persuade the

receiver once the signal is realized. Their paper differs from mine in two ways: first, the sender

31Closely related, Levy and Razin (2020) study the aggregation of forecasts over time. They assume the deci-
sion maker looks for the most likely explanation for what she observes. Explanations are information structures
consistent with previous forecasts and her prior. Thus, the signal space could vary across explanations — the
analysis can be reduced to an information structure with a binary signal. Similar to my results, the prior plays
a crucial role in the evolution of beliefs.
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chooses the signal generating process; second, they study the ex-post communication of models.

Schwartzstein and Sunderam (2022) examine the social exchange of models in networks: agents

start with a default shared model, but each comes up with a better interpretation after the

release of data, shares it within their network, and then picks the best-fitting model among all

shared ones. Social learning leads agents to have beliefs closer to the prior and feel better able

to explain data than before. Moreover, recent papers take different approaches to what makes

models persuasive. Ispano (2022) explores the following setting: before the signal is realized,

the sender communicates a model and the receiver adopts the proposed model if it is coherent

(conditional on a state, probabilities of each possible news sum to unity) and compatible with

her default model (the marginal distribution of news is undistorted).32 He argues that coher-

ence implies Bayes-consistent posteriors across signals and limits the scope of manipulation.

Yang (2022) proposes a preference for “decisive models,” that is, models that provide a strong

recommendation regarding the best course of action.

Another influential way to formalize narratives is by describing them as causal models, ex-

pressed as directed acyclical graphs (Spiegler, 2016). Eliaz and Spiegler (2020) assume agents

prefer “hopeful narratives” that are empirically consistent, i.e., narratives that maximize antic-

ipatory utility and correctly predict the empirical distribution of consequences. Their analysis

focuses on the equilibrium as a long-run distribution over narrative-policy pairs. Eliaz et al.

(2021b) study to what extent a misspecified model can distort pairwise correlations between

variables. In this paper, an analyst has incentives to show a strong correlation between two

variables, and he can propose a (mis)specification model for estimation. The authors quan-

tify the worst-case distortion when the proposed model is flexible, in which variables enter the

model under the constraint that the estimated model cannot distort the marginal distributions

of individual variables. Increasing the number of variables in the model can lead to an almost

perfect correlation.33 Directed acyclical graphs are also used by Eliaz et al. (2022) to study

the proliferation of false narratives and their effect on political mobilization in a heterogeneous

society of multiple social groups, and by Horz and Kocak (2022) to explore which conditions

affect the effectiveness of authoritarian propaganda in reducing citizens’ protests. Other formal

frameworks in which narratives have been defined are Bénabou et al. (2018), where narratives

are described in terms of moral value, and Izzo et al. (2021), where narratives describe the linear

relation between policies and their outcome.34

There are recent experimental studies inspired by these formal notions of narratives (Barron

and Fries, 2022; Charles and Kendall, 2022). In particular, Barron and Fries (2022) study

narrative provision and adoption in a financial advice setting, building on an example discussed

in Schwartzstein and Sunderam (2021). They find that advisors with misaligned incentives

communicate narratives biased from the truth and are successful in manipulating investors’

beliefs in the desired direction. In particular, narratives that better fit the observed data

32I assume models to be coherent by definition. However, one could argue that the receiver might hold an
incoherent model ex-post. This follows from the sender proposing multiple models and how the receiver selects
models across signals. To compare results, coherent and compatible models can only induce vectors of posteriors
corresponding to the isofit line of the true model.

33Also, according to (Olea et al., forthcoming), including irrelevant covariates in models helps achieve better
perceived predicted ability with a large dataset. Given the fixed state and signal space, all models have the same
dimension in this paper and cannot exhibit this type of misspecification.

34Also Izzo et al. (2021) assume that agents choose the model with the highest likelihood given the observed
data. This translates into favoring the model with the smallest mean squared error in their setting.
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are more persuasive. Hence, narratives are a highly effective tool of persuasion and are hard

to protect against. In one treatment, the advisor does not have the opportunity to tailor the

narrative to the data the investor observes. Unlike the present paper, the persuader is restricted

to one narrative. Results show that advisors are less effective in moving beliefs to their target

in this treatment. Overall, however, their paper is supportive of the framework introduced by

Schwartzstein and Sunderam (2021) and adopted in this paper.

Finally, there is a noteworthy line of empirical research focusing on narratives. Papers investi-

gate their impact on beliefs and behavior (Hagmann et al., 2020; Morag and Loewenstein, 2021;

Harrs et al., 2021; Graeber et al., 2022; Hillenbrand and Verrina, 2022; Bursztyn et al., forth-

coming), while others document how narratives about macroeconomic phenomena are spread

(Andre et al., 2021, 2022).

Persuasion The impact of persuasion has long been studied in economics (see Little, 2022, for

a comparison of approaches in a common framework). This paper contributes to this literature

in exploring the consequences of providing interpretations of unknown events at the time of

the communication. Thus, persuasion only occurs through models. This highlights two main

differences with respect to previous literature. First, the signal is undistorted, unlike leading

papers such as Milgrom (1981), where the signal could be withheld, or Crawford and Sobel

(1982), where the signal could be manipulated. A recent paper by Gleyze and Pernoud (2022)

investigates a cheap-talk game in which the receiver is not only uncertain about the state

realization but also about the true model (which variables are payoff-relevant). They find

that communication on models is impossible in equilibrium. Eliaz et al. (2021a) build on

the classic cheap-talk game with multidimensional messages, relaxing the assumption that the

receiver is capable of interpreting the equilibrium messages and allowing the sender to supply

interpretations for them. These strategic interpretations can be conditioned on both the state

and the message, as opposed to the ex-ante commitment assumption presented in this paper. As

a result, full persuasion can sometimes be attained. Second, the persuader cannot influence the

signal generating process. This is in stark contrast with the literature on Bayesian persuasion.

Kamenica and Gentzkow (2011) and many generalizations of their framework (e.g., Alonso and

Câmara, 2016; Ely, 2017; Galperti, 2019; Ball and Esṕın-Sánchez, 2021) are about persuasion

by generating information which is then interpreted by Bayesian receivers. This restricts the

sender to inducing only Bayes-plausible distributions of posteriors, unlike this paper.

A strand of previous literature studies senders who engage in ambiguous communication — by

proposing several explanations or messages — to persuade receivers who are ambiguity averse.

This was studied in cheap-talk games (Kellner and Le Quement, 2017, 2018) and in Bayesian

persuasion (Beauchêne et al., 2019). The latter paper studies a sender who chooses an ambiguous

device, that is, multiple possible signal generating processes à la Kamenica and Gentzkow (2011),

one of which will be implemented with unknown probabilities. Both the sender and the receiver

are assumed to be ambiguity-averse. The authors characterize the sender’s optimal payoff and

find that ambiguous persuasion could be more beneficial than Bayesian persuasion.

Biased Beliefs I hope to contribute also to the literature on biases in belief updating by

highlighting the importance of looking at beliefs updated conditional on all possible contingen-

cies. The reason is two-fold. First, each signal generating process maps onto a richer object, the

vector of posterior beliefs. Second, the value of a posterior conditional on one signal is compat-
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ible with many possible signal generating processes. However, in the rich literature on biased

beliefs (for a survey see Benjamin, 2019), most papers look only at deviations from Bayesian

updating in belief formation along one dimension — the gap between the posteriors reported

by the subject and the one calculated using Bayes rule, conditional the realized and observed

signal.35

Other papers suggest different criteria to form beliefs in uncertain settings that could lead to

violation of Bayes-consistency, such as the literature on belief updating with ambiguity-aversion.

In the case of multiple priors, there are two main paradigms of Bayesian updating: full Bayesian

(Jaffray, 1992; Pacheco Pires, 2002) and maximum likelihood (Dempster, 1967; Shafer, 1976;

Gilboa and Schmeidler, 1993). A common consequence of both is that information increases the

relevant ambiguity because the agent’s set of beliefs dilates (Seidenfeld and Wasserman, 1993).

As a result, ambiguity-averse agents should lower their valuations of bets for every possible

piece of information they could receive (“all news is bad news”). Shishkin and Ortoleva (2021)

experimentally test the dilation property and find that ambiguity-averse subjects do not lower

their value of bets conditional on information. Epstein et al. (2021) define sensitivity to signal

ambiguity as the attitude towards the uncertainty of the signal generating process and report

that a fraction of subjects is averse to signal ambiguity using a lab experiment. According to

their definition, being sensitive to signal ambiguity implies a violation of the Bayes-consistency

property extended to preferences.

This paper shows that inconsistent updating across signal realizations could result from adopting

different models. This could be an explanation for some of the evidence on asymmetric updating

in beliefs (e.g., Eil and Rao, 2011; Sharot, 2011; Ertac, 2011; Coutts, 2019; Möbius et al., 2022;

Drobner and Goerg, 2021).36

7 Conclusion

Persuasion has typically been studied in settings where the persuader can control the information

observed by the agent prior to making a decision, e.g., either by sending a persuasive message

or providing new informative data. However, sometimes this is not possible. In such contexts,

although the persuader cannot control or even know the information that the agent uses in

making a decision, I demonstrate that the scope for persuasion using models is large, but

generally bounded by initial beliefs.

35An exception is Esponda et al. (2020). Their focus is learning in the presence of an initial misconception
(focusing on the special case of base rate neglect). They use the vector of posteriors space to graphically
illustrated part of their results. Their figures show that participants’ beliefs are sometimes Bayes-inconsistent.
Other examples can be found in the literature on polarization (see Section 4.1.1).

36Results on asymmetric updating are mixed: some papers find more responsiveness to either good or bad
news, while others find no difference. For example, Barron (2021) finds no evidence of asymmetric updating
in a financial decision-making context where states differ in monetary rewards. In contrast, Drobner (2022)
shows that subjects update neutrally if they expect immediate resolution of ego-relevant uncertainty, whereas
they update optimistically if there is no resolution of uncertainty. This points to the idea that the underlying
state and incentives might be crucial in switching on and off asymmetric updating, which is in line with the
mechanism proposed in this paper. The provision of models depends on whether it is possible to keep signals
open to multiple interpretations (e.g., immediate vs. no resolution of uncertainty) or what incentives motivate
the supply of interpretations (e.g., financial vs. positive beliefs).
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Bayesian models assume that beliefs should be consistent across possible realizations: the re-

ceiver cannot update her beliefs in the same direction conditional on every signal. Exposure to

multiple models can lead to the violation of this property. Because the receiver is boundedly

rational in choosing the interpretation of outcomes she observes, each signal realization might

trigger the adoption of a different model. Thus, the sender can leverage multiple models to

induce beliefs across signals that the sender cannot attain by choosing the signal generating

process as in Bayesian persuasion.

Several extensions could be explored in future research. First, this paper focuses on a problem

with only a sender and a receiver. I discuss the consequences of conflicting models in a popu-

lation of receivers with different priors. Future research should develop further insights on the

sender’s optimization given a distribution of heterogeneous receivers, balancing the diverging

effects models have. Moreover, I consider only one sender communicating multiple models.

This can also be interpreted as a coordinated strategy by senders with the same incentives. The

extension to the default model is the first step towards studying competition among senders

because the sender strategically responds to a model the receiver already holds. Much remains

to be investigated in relation to multiple (uncoordinated) senders with possibly misaligned in-

centives. Second, I impose no restrictions on which models the sender is willing to supply and

the receiver is willing to accept. On the one hand, senders might be reluctant to communicate

models too far from the true one. For example, belief distortion may bear some psychological

costs for the sender, such as disappointment aversion in line with the literature on psycholog-

ical game theory (for a survey see Battigalli and Dufwenberg, 2022). In the experiment by

Barron and Fries (2022), senders communicate biased narratives to their advantage but they

also display truth-telling preferences to some extent. These frictions could be incorporated into

a theoretical extension of this paper. On the other hand, receivers might consider only some

types of models, e.g., models should never report a positive correlation between some signals

and states, or models should explain a series of conditionally independent signals. Research

along this line could shed light on how these restrictions harm or benefit the receiver.

This paper discusses a wide range of applications, proposing a possible common mechanism

that encompasses inter-personal phenomena (polarization, conflict of interest in financial mar-

kets, lobbying) and intra-personal phenomena (overconfidence as motivation). These examples

encourage research with the goal of testing the assumptions and implications in these diverse

settings.
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A Appendix: Proofs

Proof of Lemma 1. Consider the two statements separately.

(i) For each µ ∈ B, there exists a model that induces µ.

Consider µ ∈ B. As it is Bayes-consistent, there exists a distribution σ ∈ ∆(S) such that, for
each state ω, the average of the posteriors µs(ω) across signals weighted by σs equals the prior,
i.e.,

∑
s µs(ω) σs = µ0(ω). For each σ, define a model such that, for each s and ω,

πσ(s|ω) =
µs(ω) σs
µ0(ω)

.

This is a well-defined model because for each ω and s, πσ(s|ω) ∈ [0, 1] and
∑

s π
σ(s|ω) = 1.

Notice that the probability of signal s according to such a model is is Prσ(s) = σs. To see this,
calculate the probability of a signal according to the constructed model

Prσ(s) =
∑
ω

µ0(ω) πσ(s|ω) =
∑
ω

µ0(ω)

(
µs(ω) σs
µ0(ω)

)
= σs

∑
ω

µs(ω) = σs.

The posterior attached to state ω conditional on signal s induced by the model σ is

µσs (ω) =
µ0(ω)πσ(s|ω)

Prm(s)
=
µ0(ω)

σs

(
µs(ω) σs
µ0(ω)

)
= µs(ω).

Indeed, the vectors of posteriors induced by such a model is µ.

In conclusion, for each σ ∈ ∆(S) such that
∑

s µs(ω) σs = µ0(ω), there exists a model that
induces µ.

(ii) Each model m induces a vector of posterior beliefs that is Bayes-consistent
µm ∈ B.

Consider as weights for the convex combination the distribution of the signals according to the
model m: (Prm(s))s∈S . Given that m ∈ [∆(S)]Ω, it holds that it is a proper distribution with∑

s Prm(s) = 1. Then, for every ω ∈ Ω,

∑
s∈S

Prm(s) µms (ω) =
∑
s∈S

Prm(s)
µ0(ω)πm(s|ω)

Prm(s)
= µ0(ω)

∑
s∈S

πm(s|ω) = µ0(ω).

Every vector of posterior beliefs induced by a model satisfies Bayes-consistency.

Corollary 3 (Binary Signal). Let µ∅ = (µ0, µ0). For each vector of posterior beliefs µ ∈
B\{µ∅} there exists a unique model that induces µ.

Proof of Corollary 3. Lemma 1 shows that each model induces a vectors of posteriors beliefs
that is Bayes-consistent. To show the uniqueness of a model associated to a Bayes-consistent
vector of posteriors in the binary signal, it is enough to show that there exists only one distri-
bution over the signal space such that a vectors of posterior beliefs is Bayes-consistent.

Let (σs1 , σs2) = (σ, 1− σ). For each state ω, the Bayes-consistency condition implies that

µ0(ω) = σµs1(ω) + (1− σ)µs2(ω).

Then, it holds that σ =
µ0(ω)−µs2 (ω)

µs1 (ω)−µs2 (ω) .
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Hence, (σs1 , σs2) is a distribution over signals if, for every ω, either (i) µs1(ω) > µ0(ω) > µs2(ω),
or (ii) µs1(ω) < µ0(ω) < µs2(ω). These two conditions are equivalent to µ ∈ B\{µ∅} for binary
signal.

Proof of Lemma 2. Fix a posterior µs. Consider the two statements separately.

(i) For every p ∈
[
0, δ̄(µs)

−1
]
, there exists a model inducing µs with fit Prm(s) = p.

Fix p ∈
[
0, δ̄(µs)

−1
]
. To show that there exists a model with fit p inducing µs, I construct a

vector of posteriors µ such that (i) the target µs is induced conditional on s, and (ii) for each
state ω, there exists a distribution over signals σ ∈ ∆(S) with the additional property σs = p
such that Bayes-consistency holds:∑

s′

µs′(ω) σs′ = µs(ω) σs +
∑
s′ 6=s

µs′(ω) σs′ = µ0(ω). (a)

Hence, it follows from Lemma 1 that there exists a model that induce this Bayes-consistent
vector of posteriors and, thus so, with fit p.

Given the many degrees of freedom, there exists multiple vectors of posteriors that satisfy
condition (a) as long as, for each ω,

µ0(ω)− µs(ω) p =
∑
s′ 6=s

µs′(ω) σs′ ≥ 0. (b)

For instance, fix a signal s′′ 6= s and, for each ω, let µs′′(ω) = µ0(ω)−p µs(ω)
1−p . Condition (a) is

satisfied for the distribution σs′ such that σs = p, σs′′ = 1 − p, and σs′ = 0 for all the other
signals. Condition (b) is implied by p ∈

[
0, δ̄(µs)

−1
]

because

p ≤ µ0(ω)

µs(ω)
≤ 1

max
ω

µs(ω)
µ0(ω)

= δ̄(µs)
−1.

(ii) Every model inducing µs has fit Prm(s) ∈
[
0, δ̄(µs)

−1
]
.

Consider an arbitrary model inducing µs conditional on s. It follows from Bayes rule that the
fit of any m inducing the target µms = µs conditional on s must be such that, for every ω

Prm(s) =
µ0(ω)

µs(ω)
πm(s|ω).

Notice that if πm(s|ω) = 0 the fit equals 0 (minimal fit). Instead, if πm(s|ω) = 1, it follows that

Prm(s) ≤ µ0(ω)

µs(ω)
.

Because this holds for every state, the maximal fit for µs is the minimum of the ratio across
states, which equals the reciprocal of the maximal movement for µs:

min
ω

µ0(ω)

µs(ω)
=

1

max
ω

µs(ω)
µ0(ω)

= δ̄(µs)
-1.

The fit of a model that induces the target posterior can only take values in
[
0, δ̄(µs)

-1
]
.
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Proof of Proposition 1. It directly follows from Lemma 1.

Proof of Theorem 1. Take a vector of posterior beliefs µ /∈ B, otherwise it would be trivially
feasible by Proposition 1. Inducing µ requires a set of at most K = |S| models (mk)

K
k=1 such

that each model mk induce the distribution µsk conditional on the signal sk. This implies two
conditions on each model mk: (i) µmksk = µsk , and (ii) Prmk(sk) ≥ Prmj (sk) for each j 6= k.

Assume µ ∈ F . In what follows, I show that there exists a set of models inducing µ. In-
stead of directly constructing each model, I specify the vector of posteriors µmk and the fit
levels (Prmk(s))s∈S induced by each mk. The corresponding distribution of posteriors is Bayes-
plausible, thus corresponds to a model. Last, I show that each model mk is chosen conditional
on the signal sk.

For each model mk, specify the following posteriors and fit levels: for sk, set µmksk = µsk and
Prmk(sk) = δ̄(µsk)-1; otherwise, for s 6= sk and state ω, set

µmks (ω) =
µ0(ω)− δ̄(µsk)-1µsk(ω)

1− δ̄(µsk)-1
, Prmk(s) =

(
1− δ̄(µsk)-1∑
s6=sk δ̄(µs)

-1

)
δ̄(µs)

-1.

These probabilities are well-defined for every s and ω. First, each posterior is non-negative
because δ̄(µsk)-1 ≥ δ(µsk(ω)) for every ω by definition of maximal movement, and is not higher

than one because δ̄(µsk) ≥ 1−µsk (ω)

1−µ0(ω) for every ω. To see the latter, let ω̄ = arg maxω δ(µsk(ω))

and ω̃ = arg maxω
1−µsk (ω)

1−µ0(ω) . Since δ̄(µsk) ≥ 1, then µsk(ω̄) ≥ µ0(ω̄) and µ0(ω̃) ≥ µsk(ω̃)

— otherwise the ratio
1−µsk (ω̃)

1−µ0(ω̃) would be less than one, thus trivially lower than the max-

imal movement. By contradiction, suppose that
µsk (ω̄)

µ0(ω̄) >
1−µsk (ω̃)

1−µ0(ω̃ ). Then, it follows that

µ0(ω̄) (1− µsk(ω̃)) > µ0(ω̄) (1− µ0(ω̃)) > µsk(ω̄) (1− µ0(ω̃)). This implies µ0(ω̄) > µsk(ω̄),
which is a contradiction.

Also, posteriors sum up to one for every s:

∑
ω

µs(ω) =
(
∑

ω µ0(ω))− δ̄(µsk)-1 (
∑

ω µsk(ω))

1− δ̄(µsk)-1
=

1− δ̄(µsk)-1

1− δ̄(µsk)-1
= 1.

Second, each fit is non-negative because δ̄(µs)
-1 ∈ (0, 1] for each s, and not bigger than one

because µ ∈ F , implying for each s:∑
s 6=sk

δ̄(µs)
-1 ≥ 1− δ̄(µsk)-1 ≥ δ̄(µs)-1

(
1− δ̄(µsk)-1

)
.

Notice that
∑

s 6=sk Prmk(s) = 1− δ̄(µsk)-1. Thus,
∑

s Prmk(s) = 1.

Finally, note that such constructed distribution of posterior is Bayes-plausible, i.e., µ0(ω) =∑
s Prmk(s) µmksk (ω) for each ω because

∑
s 6=sk

Prmk(s) µmksk (ω) =
∑
s 6=sk

µ0(ω)− δ̄(µsk)-1µsk(ω)

1− δ̄(µsk)-1

(
1− δ̄(µsk)-1∑
s6=sk δ̄(µs)

-1

)
δ̄(µs)

-1

=
(
µ0(ω)− δ̄(µsk)-1µsk(ω)

) ∑s6=sk δ̄(µs)
-1∑

s 6=sk δ̄(µs)
-1

= µ0(ω)− δ̄(µsk)-1µsk(ω).

Therefore, it corresponds to a well-defined model.
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Such constructed set of models induces µ because each model inducing a posterior distribution
conditional on a signal is chosen conditional on the signal is tailored to. Indeed, for every other
model mj with j 6= k:

Prmk(sk) = δ̄(µsk)-1 ≥

(
1− δ̄(µsk)-1∑
s 6=sk δ̄(µs)

-1

)
︸ ︷︷ ︸

≤1

δ̄(µsk)-1 = Prmj (sk),

where the inequality follows from the fact that the sum of maximal fit levels for the target vector
is greater or equal than one guaranteeing that the multiplying factor is less or equal than one.

Assume µ /∈ F . Then, it holds that
∑

s∈S δ̄(µs)
-1 < 1, equivalent to δ̄(µsk)-1 < 1−

∑
i 6=k δ̄(µsi)

-1

for every k. If it were to exist a set of models inducing the target µ, each tailored model mk

inducing the posterior µsk has to be adopted conditional on sk. Thus, it must hold that
Prmk(sk) ≥ Prmj (sk) for each j 6= k. Notice that

Prmj (sk) = 1−
∑
i 6=k

Prmj (si) ≥ 1−
∑
i 6=k

δ̄(µsi)
-1,

since for every other signal the fit must be lower than the maximal fit associated to the target
posterior conditional on that signal, i.e., Prmj (si) ≤ Prmi(si) ≤ δ̄(µsi)

-1 for every i. This leads
to a contradiction:

1−
∑
i 6=k

δ̄(µsi)
-1 > δ̄(µsk)-1 ≥ Prmk(sk) ≥ Prmj (sk) ≥ 1−

∑
i 6=k

δ̄(µsi)
-1.

Therefore, it is not possible to construct a set of models to induce µ /∈ F .

Proof of Proposition 2. Let K = |S| and N = |Ω|. Assume that min
ω∈Ω

µ0(ω) ≥ 1
K .

First, notice that the upper bound of the maximal movement is the reciprocal of the minimum
prior across states: δ̄(µs) ≤ 1

min
ω∈Ω

µ0(ω) for any posterior belief µs. To see this,

δ̄(µs) = max
ω∈Ω

µs(ω)

µ0(ω)
≤ max

ω∈Ω

1

µ0(ω)
=

1

min
ω∈Ω

µ0(ω)
.

By Lemma 2, the maximal fit has a lower bound: δ̄(µs)
-1 ≥ min

ω∈Ω
µ0(ω).

Therefore, it holds that∑
s∈S

δ̄(µs)
-1 ≥

∑
s∈S

min
ω∈Ω

µ0(ω) = K min
ω∈Ω

µ0(ω) ≥ 1,

where the last inequality follows from the assumption on the prior.

Proof of Proposition 3 (Binary Case). First, I describe some properties of the characterizing
condition of the set of feasible posterior beliefs, then I work by cases to show the inclusion.

Step 1. Fix a signal s ∈ S. I want to rewrite the characterizing condition in Theorem 1 in
terms of posterior beliefs: for each state ω ∈ {ω1, ω2} and any other signal s′ 6= s, s′ ∈ S,
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δ(µs(ω)) ≤ 1
1−δ̄(µs′ )-1 . For convenience, I rewrite the conditions for both states ω1, ω2 only in

terms on one state. Then, the characterizing condition can be expressed as two constraints on
µs(ω1) for each signal s′:

µs(ω1) ≤ µ0(ω1)

1− δ̄(µs′)-1
= R̄(ω1; s′), (a)

µs(ω1) ≥ 1− 1− µ0(ω1)

1− δ̄(µs′)-1
= R(ω1; s′). (b)

Properties of Maximal Movement: it is useful to notice that

δ̄(µs) = max
ω

{
µs(ω1)

µ0(ω1)
,
µs(ω2)

µ0(ω2)

}
= max

ω

{
µs(ω1)

µ0(ω1)
,

1− µs(ω1)

1− µ0(ω1)

}
=

{
µs(ω1)
µ0(ω1) , if µs(ω1) ≥ µ0(ω1)
µs(ω2)
µ0(ω2) , if µs(ω1) < µ0(ω1).

Moreover, if µ0(ω1) ≥ 50%, δ̄(µs) ≤ 1
1−µ0(ω1) .

Claim: if µ0(ω1) ≥ 50%, condition (a) is not binding; otherwise, condition (b) is not binding.

Assume that µ0(ω1) ≥ 50%. Given the property of the maximal movement above, rewrite

R̄(ω1; s′) =
µ0(ω1)

1− δ̄(µs′)-1
≥ µ0(ω1)

1− 1 + µ0(ω1)
= 1,

which makes condition (a) always satisfied.

Instead, assume that µ0(ω1) < 50%. Given the property of the maximal movement above,
rewrite

R(ω1; s′) = 1− 1− µ0(ω1)

1− δ̄(µs′)-1
≤ 1− 1− µ0(ω1)

1− µ0(ω1)
= 0,

which makes condition (b) always satisfied.

Claim: if µs(ω1) < µ0(ω1), condition (a) is not binding; otherwise, condition (b) is not binding.

Assume that µs(ω1) < µ0(ω). Then, R̄(ω1; s′) ≥ 1. To see this, rewrite

R̄(ω1; s′) =
µ0(ω1)(1− µs′(ω1))

1− µs′(ω1)− 1 + µ0(ω1)
=
µ0(ω1)(1− µs′(ω1))

µ0(ω1)− µs′(ω1)
,

where the denominator is positive. In this case, it simplifies to µs′(ω1)(1− µ0(ω1)) ≥ 0, always
satisfied.

Instead, assume that µs(ω1) ≥ µ0(ω). Then, R(ω1; s′) ≤ 0. To see this, rewrite

R(ω1; s′) = 1− (1− µ0(ω1))µs′(ω1)

µs′(ω1)− µ0(ω1)
.

Then it is enough to check that

(1− µ0(ω1))µs′(ω1)

µs′(ω)− µ0(ω1)
≥ 1,

where the denominator is positive. In this case, it simplifies to µs′(ω1)(1− µ0(ω1)) ≥ 0, always
satisfied.

Step 2. Let µ0,ε = (µ0,ε(ω1), µ0,ε(ω2)) =
(

1
2 − ε,

1
2 + ε

)
and Fε the set of the feasible vectors of

posteriors with respect to this prior with corresponding relevant thresholds R̄ε(·) and Rε(·).
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To show that for ε′ < ε′′ Fε′′ ⊆ Fε′ , I work by cases depending on the relation between the
vector of posterior beliefs and the prior, summarized in Figure 10. Given the previous claims,
some conditions are always satisfied in the first two cases.

Figure 10

Case 1: µs′(ω1) ≤ µ0,ε′(ω1) ≤ µ0,ε′′(ω1). Both conditions are always satisfied: all vector of
posterior beliefs in this case are feasible for both priors.

Case 2: µ0,ε′(ω1) ≤ µs′(ω1) ≤ µ0,ε′′(ω1). All vector of posterior beliefs in this case satisfies
both conditions (a) and (b) for the prior µ0,ε′ , but this is not true for µ0,ε′′ . Thus, if µs′ ∈ Fε′′ ,
then µs′ ∈ Fε′ .

Case 3: µs′(ω1) ≥ µ0,ε′(ω1) ≥ µ0,ε′′(ω1). Only condition (b) is guaranteed for either priors.
Next, I show that condition (a) is more binding for µ0,ε′′ with respect to µ0,ε′ . To see this, it is
enough to show that, for each s, R̄ε′′;s(ω1) ≤ R̄ε′(ω1; s). That is,

R̄ε′′(ω1; s) =
µ0,ε′′(ω1)

1− µ0,ε′′ (ω1)

µs(ω1)

≤
µ0,ε′(ω1)

1− µ0,ε′ (ω1)

µs(ω1)

= R̄ε′(ω1; s),

rearranged as
µ0,ε′′(ω1)

µs(ω1)− µ0,ε′′(ω1)
≤

µ0,ε′(ω1)

µs(ω1)− µ0,ε′(ω1)
,

which is always verified since µ0,ε′′(ω1) ≤ µ0,ε′(ω1). Thus, if µs ∈ Fε′′ , then µs ∈ Fε′ .

Proof of Proposition 4. Add a dummy signal s0 /∈ S to the signal space S′ = S ∪ {s0}. I
want to show that any vector of posterior on the original signal space µ ∈ [∆(Ω)]S can be
induced.

Take an arbitrary vector of posterior beliefs µ. To induce µ, I construct a set of K = |S| models
(mk)

K
k=1 ∈ [∆(S′)]Ω such that each model mk is tailored to induce the target distribution µsk

conditional on the signal sk. This implies two conditions on each model mk: (i) µmksk = µsk , and
(ii) Prmk(sk) ≥ Prmj (sk) for each j 6= k. The construction is similar to the proof of Theorem
1. Unlike that, the models are defined on the new signal space S′, but only K = |S| models are
necessary.

Instead of directly constructing each model, I specify the vector of posteriors µmk and the fit lev-
els (Prmk(s))s∈S induced by each mk. The corresponding distribution of posteriors corresponds
to a unique model.
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For each model mk, specify the following posteriors and fit levels:

µmks (ω) =



µsk(ω) if s = sk,

µ0(ω)− δ̄(µsk)-1µsk(ω)

1− δ̄(µsk)-1
if s = s0,

any value otherwise,

Prmk(s) =



δ̄(µsk)-1 if s = sk,

1− δ̄(µsk)-1 if s = s0,

0 otherwise.

That is, for each signal realization, I am proposing the model inducing the target posterior
with its maximal fit, while inducing the residual fit level conditional on the dummy signal s0.
According to this information structure, all other signals are irrelevant as well as the posteriors
conditional on them. This construction is well-defined, and it follows details from the proof of
Theorem 1.

Such constructed set of models induces µ because each model inducing a posterior distribution
conditional on signal is chosen conditional on the signal is tailored to because the fit conditional
on any other realizable signals s ∈ S is zero:

Prmk(sk) = δ̄(µsk)-1 ≥ 0 = Prmj (sk).

Proof of Proposition 5 (Binary Case, Polarization). Consider two conflicting models m and
m′ such that πm(s1|ω1) > πm(s1|ω2) and πm

′
(s1|ω2) > πm

′
(s1|ω1). There exists a threshold

in prior p such that, if µ0(ω1) < p, m′ and m adopted respectively conditional on s1 and s2;
otherwise, m and m′ adopted respectively conditional on s1 and s2. To see this, consider for
which prior model m is adopted conditional on s1, that is Prm(s1) > Prm

′
(s1) (and thus, m′ is

adopted conditional on s2). The resulting condition is that

µ0(ω1) > p :=
1

πm(s1|ω1)−πm′ (s1|ω1)

πm′ (s1|ω2)−πm(s1|ω2)
+ 1

.

Therefore, it follows that the resulting vector of posteriors is

µ =


(
µm
′

s1 , µ
m
s2

)
, if µ0(ω1) < p(

µms1 , µ
m′
s2

)
, if µ0(ω1) > p.

Note that, if π(s1|ω1) > π(s1|ω2), then µs1(ω1) > µ0(ω1) > µs2(ω1). Therefore, the resulting
vector of posteriors is never Bayes-consistent: µ /∈ B. Furthermore, depending on the prior,
Bayes-consistency is violated differently: for every signal s it holds that (i) µs(ω1) < µ0(ω1) if
µ0(ω1) < p, and (ii) µs(ω1) > µ0(ω1) if µ0(ω1) > p.

Proof of Theorem 2. Take an arbitrary vector of posterior beliefs µ. Inducing µ requires
a set of at most K = |S| models (mk)

K
k=1 such that each model mk is tailored to induce the

distribution µsk conditional on the signal sk. This implies two conditions on each model mk:
(i) µmksk = µsk , and (ii) Prmk(sk) ≥ Prm(sk) for each m ∈ {m1, . . . ,mK} ∪ {d}.
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Assume µ ∈ Fd. I show that there exists a set of models inducing µ. Following the proof of
Theorem 1, construct the vector of posteriors µmk and the fit levels (Prmk(s))s∈S induced by
each mk. It only remains to show that each model mk is chosen conditional on signal sk.

Model mk is chosen with respect to the default model given sk because Prmk(sk) = δ̄(µsk)-1 ≥
Prd(sk) because µ ∈ Fd. Also, for every other model mj with j 6= k:

Prmk(sk) = δ̄(µsk)-1 ≥

(
1− δ̄(µsk)-1∑
s 6=sk δ̄(µs)

-1

)
︸ ︷︷ ︸

≤1

δ̄(µsk)-1 = Prmj (sk),

where the inequality follows from µ ∈ Fd and, thus

δ̄(µsk)-1 ≥ Prd(sk) = 1−
∑
s 6=sk

Prd(s) ≥ 1−
∑
s 6=sk

δ̄(µs)
-1.

Assume µ /∈ Fd. Then, there must be a signal s` such that the characterizing condition does
not hold: δ̄(µs`)

-1 < Prd(s`). If it were to exist a set of models inducing the target µ, each
tailored model mk inducing the posterior µsk has to be adopted conditional on sk. Thus, it
must hold that Prmk(sk) ≥ Prm(sk) for each m ∈ {m1, . . . ,mK} ∪ {d}.

This leads to a contradiction because to have the model m` adopted conditional on s` it must
be the case that Prm`(s`) ≥ Prd(s`) but it also holds that Prd(s`) > δ̄(µs`)

-1 ≥ Prm`(s`).
Therefore, it is not possible to construct a set of models to induce µ /∈ Fd.

Proof of Proposition 6. Note that Fd depends only on the fit levels induced by the default
model d — some distribution over signals p ∈ ∆(S) — we can rewrite the union of Fd as⋃

d∈M
Fd =

⋃
d∈M

{
µ ∈ [∆(Ω)]S : ∀s ∈ S, δ̄(µs)-1 ≥ Prd(s)

}
=
{
µ ∈ [∆(ω)]S : ∃p ∈ ∆(S) such that ∀s ∈ S, δ̄(µs)-1 ≥ ps

}
.

I show separately the two inclusions.

(i) Take µ ∈ F . It is to be shown that for each µ ∈ F there exists a distribution over signals
p ∈ ∆(S) such that δ̄(µs)

-1 ≥ ps for every s.

Since
∑

s∈S δ̄(µs)
-1 ≥ 1, it is possible to construct p scaling down each reciprocal of the maximal

movement so that the resulting components sum to one. For each s, set

ps =
δ̄(µs)

-1∑
s′∈S δ̄(µs′)

-1
.

This is a well-defined distribution over signals, because for each s it holds ps ∈ [0, 1] and∑
s ps = 1. Moreover, for each signal s, we have

δ̄(µs)
-1 ≥ δ̄(µs)-1 1∑

s′∈S
δ̄(µs′)

-1︸ ︷︷ ︸
≤1

= ps,

as needed.
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(ii) Take µ ∈
⋃
d∈MFd. Then, for every signals s, there exists a distribution over signals

p ∈ ∆(S) such that δ̄(µs)
-1 ≥ ps for every s. Note that

δ̄(µs)
-1 ≥ ps = 1−

∑
s′ 6=s

ps′ ≥ 1−
∑
s′ 6=s

δ̄(µs′).

Thus, for each signal s, it holds that δ̄(µs)
-1 ≥ 1 −

∑
s′ 6=s δ̄(µs′), equivalent to

∑
s δ̄(µs) ≥ 1.

Hence, µ ∈ F
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B Appendix: Additional Figures

Figure 11: Priors on election winner, by party

Notes: The y-axis shows the percentage of answers to the question “Who do you think will win the 2020
presidential election?” by reported party affiliation.
Source: Economist/YouGov poll, October 25-27 2020.

Figure 12: Confidence in fair election (Persily and Stewart, 2021)

Notes: The y-axis shows the percentage answering “a great deal” or “quite a bit” in response to the question
“How much confidence do you have that the 2020 presidential election [will be held/was held] fairly?”
Source: Economist/YouGov poll, 2020.
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