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Abstract

To what extent is it possible to manipulate beliefs by providing interpretations of

unknown events? I characterize the feasible posteriors across signals when the agent is

exposed to a set of models to interpret observable signals and adopts the model that

best fits what is observed. Because each signal could trigger the adoption of a different

model, posteriors across signal realizations might not average to the prior. The scope

of persuasion is large, even for a persuader who does not control or know the signal

the agent observes. I apply this framework to political polarization, finance, lobbying,

and self-persuasion.
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1 Introduction

Beliefs are shaped by how we interpret the world. When we use different interpretations to

make sense of the same event, we might reach contrasting conclusions. Voters may disagree

on the outcome of an election. Consumers often differ in how they evaluate companies

based on the same public initiatives. Investors make different predictions based on the

same past data. This occurs even when we share the same preferences and initial beliefs.

One potential explanation for reaching divergent conclusions in such cases is that we adopt

different narratives to interpret the same data. Narratives link what we observe to what

we want to understand: they provide interpretations of events.1 Thus, influencing the

narratives people adopt can be a powerful tool to manipulate and persuade them. Indeed,

when making sense of the observed data, one might rely on narratives provided by more

knowledgeable sources, such as political figures, financial advisors, or experts considered

trustworthy. This type of persuasion is powerful because it allows for changing people’s

beliefs without controlling or even knowing what they observe.

I study the problem of persuading a boundedly rational agent by providing interpretations

of possible events independent of what is actually observed. Consider an agent (the receiver,

she) who after observing a new piece of information about the relevant payoff state takes

an action that affects both her payoff and the persuader’s (the sender, he). This additional

information on the unknown state, a signal, is generated by a fixed stochastic process. The

sender cannot manipulate the signal or the process generating it. Still, he can provide

the receiver with one or multiple ways of interpreting the possible signals, called models.

Following Schwartzstein and Sunderam (2021), a model provides likelihood functions that

assign a distribution of signals conditional on each state.2 Persuasion arises because the

receiver adopts the most plausible model given what she observed. This is formalized by

adopting the model that maximizes the likelihood of the realized signal given her prior, the

fit. Without knowing the signal realization, the sender strategically communicates models

to manipulate how the receiver interprets the different signals. The main result of this paper

pins down the extent to which beliefs can be manipulated across signal realizations, thus

1The Cambridge Dictionary defines a narrative as “a particular way of explaining or understanding
events.” Despite the growing attention to this topic in economics, there is not yet a commonly shared
definition of what a narrative is. Different ways of formalizing it have emerged in recent years, and I discuss
the main ones when reviewing the related literature. Barron and Fries (2023) provide a detailed discussion
of the current conceptualization of narratives in economics in their appendix.

2Sometimes, while discussing examples, I informally refer to models as narratives or stories.
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providing clear bounds to what the sender can achieve using models to persuade.

Suppose a politician wishes to persuade a (representative) voter that he is the legitimate

president regardless of the reported election outcome. The voter recognizes the politician

as president only if she strongly believes him to be the legitimate winner once she observes

the reported election outcome. Before the election, the politician communicates to the voter

models about the election system. Assume that the politician communicates only the model

according to which the voting system is fair. Since there is only one model available, the

voter always adopts that. Then, once the election outcome is revealed, the voter would

recognize the politician as president if the latter is the reported winner, while she would

not otherwise. How can the politician be recognized as the legitimate president regardless

of the election outcome? He cannot manipulate the reported election outcome or the voting

system. However, before the vote, the politician could also promote a conspiracy theory

according to which elections are rigged.3 Exposure to multiple models allows inconsistent

reasoning to take root: each election outcome triggers the adoption of a different model.

The voter’s initial beliefs play a crucial role because they drive which model is adopted

based on the reported outcome. Assume that the voter expects the politician to win the

election fairly. If the politician is the reported winner, the most plausible model is the

one about the just voting system; however, if the politician is not the reported winner, the

conspiracy theory resonates best with the voter. This is equivalent to the voter holding an

inconsistent interpretation across election outcomes: “if this politician is reported as the

winner, the election system is fair; otherwise, elections are rigged.”4 As a result, the voter

updates upwards her beliefs about the politician being the legitimate winner, recognizing

him as president regardless of the election outcome.

To what extent can the sender manipulate the receiver’s beliefs using models? To answer this

question, it is necessary to keep track of the beliefs the receiver holds conditional on every

signal realization. Therefore, the main object of the analysis is an array of the receiver’s

3For simplicity of exposition, I describe these inconsistent models as provided by a single agent. One
could also think about this as a coordinated strategy implemented by different agents, e.g., different members
of the same party implementing the same strategy in a coordinated manner. The receiver might be less
sensitive to this type of contradiction, and the credibility of the sources would be less likely to be questioned.

4The following are examples of other domains in which agents might hold inconsistent interpretations,
as a result of selecting different models conditional on different facts. While interpreting a grade at school,
a student that believes she is competent in a subject might believe the following story: “if it’s a good grade,
it must be very informative about ability; if it’s a bad grade, it does not convey much information.” When
learning about the new COVID-19 vaccine, somebody skeptical about vaccines might think: “if clinical trials
report the vaccine as safe, tests were conducted in a hurry; if clinical trials report the vaccine as unsafe,
tests were conducted properly.”
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posteriors given each signal, called a vector of posterior beliefs. In the previous example,

this means describing the voter’s beliefs conditional on both election outcomes: when the

politician is the reported winner of the election and when he is not. The main result of this

paper characterizes the set of feasible vectors of posteriors. It conveys two main insights.

First, the sender can always bias the receiver’s beliefs in a given direction. When many

models are provided, each signal might lead the receiver to adopt a different model. As a

result, her beliefs may be inconsistent across realizations: all posteriors might be higher or

lower than the prior. Bayesian models do not allow for this type of inconsistency. In the

example, the voter’s posteriors are both higher than her prior. The politician achieves this

with two models: one tailored to the case of reported victory and one tailored to the case

of reported loss.

Second, there are constraints on beliefs the sender is able to induce. Generally, not all vectors

of posteriors are feasible. To induce a vector of posteriors, the sender should construct a

set of tailored models so that each model is adopted conditional on the signal to which it

has been tailored, inducing the desired posterior given that signal. Because models compete

with each other across signal realizations, such a set of models does not always exist. The

intuition is the following. There is a trade-off between how well a model can explain a signal

and how far it can move posteriors from the prior given that signal. To ensure that each

signal triggers the adoption of its tailored model, the posteriors across realizations should

not be too distant from the prior overall. The maximal belief manipulability is generated by

maximal overfitting : each tailored model maximally fits the target signal given the desired

posterior. This is because the more a model fits a signal, the more freedom to move posteriors

away from the prior conditional on the other signals with other models. To better convey the

intuitions behind these formal results, I introduce a graphical approach for the special case

of binary signal and state (hereafter, binary case). This also yields a graphical construction

of which vectors of posterior beliefs are feasible.

The main theorem characterizes the vectors of posteriors that are feasible when the receiver

is exposed to multiple models. The most natural application of this result is a model with a

sender who provides models strategically to persuade a receiver to behave in his own interest.

While I focus on this setting throughout the paper, the same feasibility constraint remains

valid if multiple senders are supplying models or models are “in the air” (not strategically

supplied). The result, therefore, provides a general building block for the study of belief
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manipulability also in other settings. Moreover, the result establishes an upper bound on

belief manipulability for a large class of alternative assumptions on how the receiver updates

her beliefs.5

Having explored the limits of belief manipulability, I turn to the question of what makes

the receiver more vulnerable to persuasion. Initial beliefs play a crucial role. In the binary

case, the sets of feasible vectors of posteriors can be ordered based on the prior: the closer

the receiver’s prior is to the uniform distribution, the more she can be manipulated. When

her prior is 50-50, the receiver is fully persuadable: the sender can provide a set of models

to make her hold any beliefs regardless of what she observes. More generally, I provide

necessary and sufficient conditions for full manipulability. The sender has more leeway to

manipulate if there are few states on which the receiver has dispersed priors and there are

many signals to be interpreted. Furthermore, I consider an extension where the receiver

initially holds a model by default. I characterize the set of feasible vectors of posteriors in

this setting to show how a default model constrains belief manipulation.

I present several stylized applications that fit this setting. First, I discuss the consequences

of being exposed to conflicting models in a political setting. Communicating a large number

of possibly contradictory and untruthful stories is one of the central features of the “firehose

of falsehood,” a propaganda usually associated with modern Russia (Paul and Matthews,

2016). The exposure to conflicting ways of interpreting information can lead to both con-

firmation bias and inevitable polarization. I formalize this result for the binary case and I

provide some suggestive evidence of this mechanism using the case of the 2020 US presiden-

tial election.6 Second, I study the misalignment of incentives between a financial advisor

and investors with private information. The framework of this paper is suitable to study a

private-information setting: the receiver has access to the signal, but the sender does not.

Communicating different models that could be picked up depending on the private infor-

mation of the investors, like past financial experience, allows the advisor to always move

beliefs in an advantageous direction. I illustrate the optimal communication strategy for

5Appendix B shows that the resulting vectors of posteriors with other information-based belief updating
rules belong to the feasibility set. All the following cases satisfies this: (i) the receiver updates beliefs using
a model constructed as a convex combination of the models she was exposed to, (ii) the receiver is Bayesian
with prior over models, (iii) the receiver has prior over models but biases her Bayesian beliefs towards the
best-fitting model, and (iv) the receiver updates her beliefs using the best-fitting model but underinfers.

6The 2020 US presidential election provides an example of conflicting narratives communicated to voters
before the release of the election outcome. Before the ballot, Donald Trump spread allegations on how
elections could be rigged against him, especially through the vote-by-mail system. I use this case to illustrate
some stylized facts in line with my predictions.
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the advisor for both optimistic and pessimistic investors. The third application explores a

multiple-selves setting in which an agent can distort her own beliefs by manipulating the

perceived informativeness of observable signals or leaving data open to interpretation. This

proposed mechanism can deliver the classic implications of the literature on motivated be-

liefs but also sets a bound on belief distortion. I provide an example of how models allow

an agent to distort her confidence to offset her time-inconsistent preferences and commit to

a costly action. Last, I show how a strategic persuader could challenge a shared model to

insinuate doubt and deepen polarization for agents differing in initial beliefs. I exemplify

this in the context of the lost trust in science on issues like climate change and the health

effects of smoking, where the so-called “merchants of doubt” (e.g., Michaels, 2008; Oreskes

and Conway, 2011) provided alternative ways of interpreting scientific evidence. Holding a

shared initial model does not deter polarization in a population of heterogeneous receivers.

This paper speaks directly to two strands of economic literature — narratives and persuasion

— that have flourished in the last decade (see Section 6 for a more detailed discussion of

the related literature). Starting from Shiller (2017, 2019), there has been an increasing

formalization of narratives in the economic literature using different notions: narratives as

likelihood functions (Schwartzstein and Sunderam, 2021), or directed acyclical graphs (Eliaz

and Spiegler, 2020). This paper builds on the first approach. Inspired by the interdisciplinary

research on sense-making (e.g., Weick, 1995; Chater and Loewenstein, 2016), Schwartzstein

and Sunderam (2021) formalize the concept of models as used in this paper and assume that

individuals prefer the model that best fits the observed data and prior knowledge. They

study the problem of manipulating a receiver endowed with a default model by strategically

providing her with a model after a public signal is realized (ex-post). Instead, I investigate

a setting in which the sender commits to his communication strategy without knowing the

signal realization (ex-ante). The reason is two-fold. First, it is a sensible assumption.

Shifting communication ex-ante gives more credibility to the sender. For example, a voter

may be skeptical if the politician claims elections to be rigged only after losing the election.

Also, in some cases the sender might be unable to acquire the information available to the

receiver. For instance, an investor might prefer not to disclose to her financial advisor some

relevant private information, such as previous experiences. Second, ex-ante commitment

imposes a constraint on the sender, pinned down in the main result of this paper. Extending

this result to the case in which the receiver has a default model allows comparability with
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Schwartzstein and Sunderam (2021): with a default model, the sender can attain the same

outcome with ex-ante or ex-post communication of models. However, the set of ex-post

optimal models might not be optimal ex-ante.

The strategic provision of models implies significant differences from the previous literature

on persuasion. The sender does not alter the signal the receiver observes, unlike the cheap

talk literature (e.g., Milgrom, 1981; Crawford and Sobel, 1982). There is a fixed signal

generating process that cannot be manipulated. This is in stark contrast with the literature

on Bayesian persuasion, started by Kamenica and Gentzkow (2011) and continued by many

generalizations of their framework (e.g., Alonso and Câmara, 2016; Ely, 2017; Galperti,

2019; Ball and Esṕın-Sánchez, 2021). In broad terms, these papers are about persuasion

by generating information: the sender commits to an experiment that maps each state

to a distribution of signals. In the political example, this translates into the politician

manipulating the voting system and its accuracy. Because the chosen signal generating

process induces a distribution over the receiver’s posteriors, such a distribution must be

Bayes-plausible: the expected posterior has to average to the prior. With this paper, I relax

the Bayes plausibility constraint in a disciplined manner. By providing models ex-ante, the

sender can induce posteriors across signals unattainable with Bayesian persuasion, but this

communication strategy generally imposes restrictions on what the sender can achieve.

The rest of the paper is organized as follows: Section 2 sets up the framework. Section

3 addresses the question of what the receiver can be persuaded of. Section 4 illustrates

applications. Section 5 extends the results to the case in which the receiver is endowed with

a default model. Section 6 discusses the related literature. Section 7 concludes. All proofs

can be found in Appendix A.

2 Set-up

Two agents, a sender and a receiver, have utility functions US(a, ω) and UR(a, ω) that

depend on the receiver’s action a ∈ A and the state of the world ω ∈ Ω. They share a

common prior µ0 ∈ int(∆(Ω)).7 The receiver observes a signal s ∈ S. The state and signal

spaces are finite and fixed. A model m is a map that assigns to each state a distribution

of signals conditional on that state: it specifies πm(s|ω) for every s ∈ S and ω ∈ Ω with

7This assumption is made for simplicity. See Section 4.2 for an example with heterogeneous priors.
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∑
s∈S π

m(s|ω) = 1 for each ω ∈ Ω. Additionally, each model has to be such that there does

not exist a signal s ∈ S such that πm(s|ω) = 0 for each ω. Let M be the set of all such

models. Conditional on signal s, a model m induces posterior belief µm
s via Bayes rule. I

refer to the likelihood Prm(s) =
∑

ω∈Ω µ0(ω) π
m(s|ω) as the fit of the model m given s.

Consider the following timing. Without knowing the signal realization, the sender commu-

nicates a set of models to the receiver. Given the observed signal, the receiver adopts a

model to update her prior and chooses an action. In particular, I assume the receiver to

act as follows. First, she adopts the model with the highest fit conditional on the observed

signal s among the set of models M ⊆ M she has been exposed to:

m∗
s ∈ arg max

m∈M
Prm(s).

Then, she updates her prior using the adopted model and chooses the action that maximizes

her expected utility:

a∗s ∈ arg max
a∈A

E[UR(a, ω)],

where the expectation is taken with respect to the posterior µ
m∗

s
s . When indifferent, the

receiver adopts the model or the action that maximizes the sender’s expected utility.

The sender knows the receiver’s preferences and the true model t, specifying the objective

probabilities of signals under the signal generating process. Let µ = (µs)s∈S ∈ [∆(Ω)]S

be a vector of posterior beliefs : it describes the posterior beliefs conditional on each signal

realization. The value of a vector of posteriors µ equals the sender’s expected utility given

the receiver’s actions at those beliefs calculated using model t:

V (µ) =
∑
s∈S

Prt(s) E
[
US(a∗s, s)

]
.

Given M , the receiver’s resulting vector of posterior beliefs is such that for each signal the

posterior is induced by the model with the highest fit, i.e., µM =
(
µ
m∗

s
s

)
s∈S

. Therefore, the

sender chooses the set of models M∗ with the purpose of influencing the receiver’s action to

maximize his value at the resulting vector of posteriors:

M∗ ∈ arg max
M⊆M

V (µM).
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Discussion of Assumptions. Before presenting the results, I discuss some of the as-

sumptions behind this setting. I start by focusing on the receiver. First, I relax Bayes

rationality of the receiver only partially: she updates her prior via Bayes rule once she

has selected a model. Following Schwartzstein and Sunderam (2021), the receiver adopts

the model that maximizes the likelihood of observed data.8 Appendix B shows that other

information-based belief updating rules induce less biased beliefs compared to this. Impor-

tantly, the receiver does not come up with every model she is willing to entertain, but she

compares only the models she was exposed to, and only one model is used to update beliefs.9

This is in line with Inference to the Best Explanation (Harman, 1965; Lipton, 2003): only

the best hypothesis is used to make an inference. However, this theory is agnostic on what

“the best” means. Here, I consider as a measure the goodness of fit.10 A line of research in

cognitive psychology argues that hypotheses are supported by the same observations they

are supposed to explain, and the more they explain, the more confidence we give to that

hypothesis (Koehler, 1991; Pennington and Hastie, 1992; Lombrozo and Carey, 2006). Dou-

ven and Schupbach (2015a,b) provide evidence of the importance of explanatory power in

updating and predicting estimates of posterior probabilities.11 Second, I assume the receiver

to be näıve. The receiver does not know the true model and does not form beliefs about

the possible models. As a result, she cannot anticipate the sender’s value even if she knows

or can learn about the sender’s preferences. This prevents the receiver from being strategic

about the communicated models. If she could form beliefs about the true model, it would

allow her to learn more about the state directly, ignoring the sender’s proposed models.

This full näıveté assumption is a common starting point in the literature (e.g., Heidhues

8The literature on belief updating under ambiguity considers a maximum likelihood updating rule,
introduced by Dempster (1967) and Shafer (1976), then axiomatized by Gilboa and Schmeidler (1993).
When agents consider multiple priors over states, they only update the subset of priors that maximizes the
probability of the realized event. The other most common rule for updating in the case of multiple priors
is full Bayesian updating (Jaffray, 1992; Pacheco Pires, 2002): subjects update prior-by-prior and retain
ambiguity in their posteriors. I do not consider multiple priors over states but multiple models that could
be used for updating. In this setting, a recent paper (Frick et al., 2022) shows that maximum likelihood
updating is maximally efficient in learning under ambiguity aversion.

9For example, a Bayesian receiver would average the prediction of each model weighted by the posterior
of each model given the observed signal and her prior over models.

10I abstract from the reasons this is the case. For example, it might be that the most plausible model is
adopted because people believe what they are prepared to hear, or that communicated models are stored in
the receiver’s memory and the best-fitted one is the easiest to retrieve (e.g., Bordalo et al., 2017).

11Model selection via maximum likelihood is equivalent to selecting the model with the higher posterior
probability given the signal, starting from a flat prior over proposed models. There is some evidence that
people choose the most probable hypothesis. Simple and more probable explanations are valued (Einhorn
and Hogarth, 1986; Thagard, 1989), but in the absence of a simplicity difference, people prefer more probable
explanations (Lombrozo, 2007).
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and Kőszegi, 2018; Eyster, 2019) and it incorporates several motives leading the receiver to

underreact to the sender’s private information and incentives.

The sender’s behavior differs in a two-fold manner from Schwartzstein and Sunderam (2021).

First, the sender communicates models without knowing the signal realization. This allows

for a temporal interpretation: a public signal will be observed by both agents, but the sender

has to provide models before its realization. Also, this assumption can accommodate a

private-information interpretation: the receiver might hold some private information on the

state — the signal — and the sender cannot access it. Second, the sender can communicate

as many models as he wishes. Because he does not know the signal realization, he has

incentives to send multiple models that could be picked up depending on the realization.

Note that there is no need to have more models than the number of signal realizations. This

explains why Schwartzstein and Sunderam (2021) do not consider multiple models provided

ex-post — unless the sender wishes to persuade multiple receivers. In addition to the

aforementioned differences, I further refine the definition of models to exclude cases where

the agent has to update beliefs conditional on a zero-probability signal.12 This restriction

only affects the preliminary results of Section 3.1, and does not impact the main results.

3 Ex-Ante Model Persuasion

This section starts with two preliminary results. First, I illustrate the connection between

models and vectors of posterior beliefs. Second, I pin down the trade-off between how well a

model can fit the observed realization and how much a model can move the posterior away

from the prior. Then, I state the main result of the paper and provide a graphical intuition

for the binary case. Last, I discuss some comparative statics and the sender’s problem.

3.1 Preliminaries

To solve the sender’s problem in the Bayesian persuasion literature, it is pivotal to character-

ize not only the posteriors the receiver might attain but also with which probabilities these

12This only occurs if conditional on signal s the agent adopts model m with Prm(s) = 0. Given interior
priors, Prm(s) = 0 if and only if πm(s|ω) = 0 for each ω. I opted for restricting models to the case in which
this never occurs for any signal rather than making an additional, and possibly more arbitrary, assumption
on how agents update beliefs after a zero-probability signal. This issue is not relevant in Schwartzstein and
Sunderam (2021), where the receiver is endowed with a default model and the sender strategically provides
an alternative model with higher fit, or in Bayesian persuasion, where the sender chooses the true model
and thus the receiver cannot encounter unforeseen realizations.
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posteriors can be induced, i.e., the distribution of the receiver’s posteriors. The relevant

constraint is that each information structure feasible for the sender corresponds to a Bayes-

plausible distribution over posteriors: the expected posterior must equal the prior.13 By

contrast, this paper assumes a fixed distribution over the signals induced by the true model.

Therefore, to solve the sender’s problem, it is enough to study the vectors of posteriors that

the receiver could hold. Given this, the sender optimizes his value over this feasibility set.

As a first step, I show an equivalent representation between models (information structures

with fixed signal space) and vectors of posteriors (the support of the distribution of poste-

riors) under a condition comparable to Bayes-plausibility. A vector of posterior beliefs µ is

Bayes-consistent if the prior is a strict convex combination of the posteriors across signals:

there exists φ ∈ int(∆(S)) such that µ0 =
∑

s∈S φsµs. Let B ⊂ [∆(Ω)]S be the set of all

Bayes-consistent vectors of posteriors. Let µm be the vector of posteriors such that each

posterior is induced by model m. Bayes-consistency is the only restriction that Bayesian

updating imposes on vectors of posteriors.

Lemma 1. For each Bayes-consistent vector of posteriors µ ∈ B there exists a model that

induces µ, and each model m induces a Bayes-consistent vector of posteriors µm ∈ B.

Next, I focus on the trade-off between how well a model can fit data and how much a model

can move beliefs. Define the movement for µs in state ω as δ(µs(ω)) = µs(ω)/µ0(ω) and

the maximal movement for µs as δ̄(µs) = maxω∈Ω δ(µs(ω)). With this, it is possible to

characterize the set of fit levels a model can have when inducing a target posterior.

Lemma 2. Fix a posterior µs. For every p ∈
(
0, δ̄(µs)

−1
]
there exists a model inducing µs

with fit Prm(s) = p, and every model inducing µs has fit Prm(s) ∈
(
0, δ̄(µs)

−1
]
.

Intuitively, there is less freedom in terms of fit levels to induce posteriors further from

the prior. Schwartzstein and Sunderam (2021) characterize the upper bound in Lemma 2:

conditional on a signal, the maximal fit for a target posterior coincides with the reciprocal of

the maximal movement. Any model that leads beliefs to react a lot given a signal realization

(higher movement) cannot fit the data well (lower fit).

13There is a recent literature studying the set of feasible joint posterior distributions for multiple Bayesian
agents (e.g., Arieli et al., 2021; Morris, 2020; Mathevet et al., 2020) or multiple signals (Levy et al., 2022).
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3.2 Feasible Vectors of Posterior Beliefs

In this section, I characterize the set of feasible vectors of posteriors that the receiver could

hold. The first result is straightforward and shows that only Bayes-consistent vectors of

posterior beliefs are feasible when a single model is proposed.

Proposition 1 (One Model). If |M | = 1, the set of feasible vectors of posteriors equals B.

Next, I consider the case in which the receiver is exposed to many models. The following the-

orem shows how a simple condition characterizes the set of feasible vectors of posteriors: the

harmonic mean of the maximal movement across signals is not higher than the number of sig-

nal realizations. Let x = (x1, . . . , xN), then the harmonic mean is H(x) =
(∑N

i=1 x
-1
i /N

)-1
.

Theorem 1 (Many Models). The set of feasible vectors of posteriors is

F =
{
µ ∈ [∆(Ω)]S : H

(
δ̄(µs)

)
≤ |S|

}
.

Allowing for multiple models expands the feasibility set. However, it is not the case that

all vectors of posteriors are feasible because there is a trade-off in movement across signal

realizations: moving a posterior away from the prior restricts how much movement is allowed

for posteriors conditional on other signals. Thus, not “anything goes.”

A vector of posterior beliefs is feasible if and only if there exists a set of tailored models.14

A model is tailored to a specific signal realization if (i) it induces the target posterior condi-

tional on that signal, and (ii) it is adopted conditional on that signal. The latter condition

introduces an analog of the incentive compatibility constraint for models depending on their

fit levels across signal realizations. The proof shows that if a vector satisfies the condition

of Theorem 1 then a set of models satisfying these conditions exists, otherwise not. As

models compete with each other across realizations, the higher fit a model has inducing the

posterior, the more freedom there is to induce posteriors conditional on other realizations

with other models. Therefore, the maximal fit associated with each posterior pins down

the extent to which each posterior contributes to the vector’s feasibility: if low, the other

posteriors should compensate by being closer to the prior; if high, the other posteriors could

be further away from the prior. In particular, the frontier of the feasibility set — the fur-

thest vectors of posteriors from the prior that are still feasible — is generated by maximal

14Providing a number of models equal to the number of signals allows maximal belief manipulability.
More models would not enlarge the set because, at most, one model is adopted conditional on each signal.
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Figure 1: Graphical intuition for the binary case

overfitting : each tailored model induces the desired posterior with maximal fit conditional

on the target signal. Closer vectors to the prior are always feasible.

3.2.1 Graphical Intuition

To provide intuitions for these results, I introduce a graphical approach for the binary case.

In the following graphs, the two axes represent the posteriors attached to state ω1 for all two

signal realizations; thus, each point represents a vector of posterior beliefs. I represent the

prior µ0(ω1) = 0.3 as the vector of posteriors with all posteriors equal to the prior (orange

point). The purple area in Figure 1a depicts all Bayes-consistent vectors of posteriors: either

µs1(ω1) > µ0(ω1) > µs2(ω1), or µs1(ω1) < µ0(ω1) < µs2(ω1). Intuitively, updating beliefs

always in the same direction is impossible. By Lemma 1, every point in the purple area

corresponds to a model.15

Figure 1b focuses on a single model. The purple line passing through the induced vector of

posteriors (purple point) and the prior is the isofit line associated with this model: all the

15With a binary signal, there is a one-to-one map between Bayes-consistent vectors of posteriors and
models (Corollary 3, Appendix A). The only exception is the vector for which all posteriors equal the prior
there are infinitely many uninformative models (assigning the same distribution of signals for all states)
inducing it.
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points on the isofit line correspond to models with the same fit given each signal.16 The

slope of the isofit line can be interpreted as follows: the steeper (flatter) the line, the higher

the fit given s1 (s2). For each fit level, it is possible to partition B into three subsets: vectors

induced by models with the same fit (isofit line), vectors induced by models with higher fit

given s1 (red area), and vectors induced by models with higher fit given s2 (blue area).

Consider the target posterior µs1(ω1) = 0.7 (dotted line) in Figure 1c. There is a multiplicity

of models (yellow line) that induce the same posterior conditional on the signal, but with

different levels of fit. By Lemma 2, the maximal fit of a model inducing the target given s1

is 43%. Such a model corresponds to the red point: a steeper line cannot induce the target.

Points of lighter color represent models with lower fit levels (respectively, 30% and 15%).

Inducing a target vector of posteriors (black point) that is not Bayes-consistent requires

two models: m1 tailored to s1 and m2 tailored to s2. I start by fixing model m1 inducing

the target µs1 and then identify the compatible posteriors given s2 if m1 is adopted given

s1. Consider model m1 (red point) in Figure 1d. Because m1 has to be adopted given s1,

a compatible model m2 cannot lie in the red area (higher fit given s1). The compatible

posteriors given s2 are all the y-coordinates of points in the blue area or on the isofit line

(blue line on the y-axis). Even though the target µs2 does not lie in this set, it does not

imply that the target is unfeasible. By Lemma 2, there are many models with different fit

levels inducing µs1 . Figure 1e shows an alternative model m1 that induce µs1 with maximal

fit given s1. As a result, the set of compatible posteriors given s2 expands: by increasing

Prm1(s1), Prm1(s2) decreases and thus more models can be adopted given s2. This set

includes µs2 and thus there exists a model m2 that can induce the target together with m1.

Maximal overfitting allows for maximal belief manipulability because it generates the largest

set of posteriors given s2 compatible with µs1 . The yellow point where the maximal com-

patible posterior given s2 (dotted red line) intersects µs1 exemplifies how to construct the

upper frontier of the feasibility set (yellow line) in Figure 1f. All vectors below this line

(yellow area) are feasible.

16Formally, an isofit is the set of vectors of posteriors induced by models with the same fit conditional
on every signal realization. For each φ ∈ int(∆(S)), formalize

I(φ) =
{
µ ∈ B : ∀ω ∈ Ω, µ0(ω) =

∑
s∈S

φsµs(ω)
}
.

In the binary case, consider the Bayes-consistency constraint for ω1 with weights given by the fit levels
induced by model m and re-arranged to µs2(ω1) = µ0(ω1)/Pr

m(s2)− Prm(s1)/Pr
m(s2)µs1(ω1). All models

with the same fit (Prm(s1),Pr
m(s2)) correspond to points on this line.
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3.2.2 Comparative Statics

Next, I study what makes the receiver more vulnerable to persuasion. Generally, not all

vectors of posterior beliefs are generally feasible. Interestingly, this is not the case when the

receiver’s minimal prior across states is sufficiently high relative to the reciprocal number

of signal realizations. In this case, the receiver is fully persuadable: any vector of posterior

beliefs can be induced.

Proposition 2. All vectors of posteriors are feasible if and only if minω µ0(ω) ≥ 1/|S|.

The proposition illustrates a simple test to check whether the receiver is fully persuadable.

Two observations follow. First, the minimal prior across states contains information regard-

ing the set of feasible vectors of posteriors. To get an intuition for this, notice that the

reciprocal of the minimal prior across states is the upper bound of the maximal movement,

i.e., δ̄(µs) ≤ 1/minω µ0(ω) for any µs, pinning down the upper bound of the harmonic

mean of the maximal movement across signals. Also, the minimal prior across states can

be interpreted as a measure of the concentration of beliefs because, by increasing the min-

imal prior over states, the prior beliefs get closer to a uniform distribution. Therefore, for

priors closer to uniform, there is a lower movement on average to induce posteriors fur-

ther away from the prior and thus more belief manipulability. Second, the receiver is more

manipulable in a setting with more signals to be interpreted. Tailoring models to specific

signals allows more feasible vectors of posteriors but also requires models to be compatible

with each other across signals: the more signal realizations, the less stringent this condi-

tion is. To exemplify this, continue the example of Figure 1e where a model m (red point)

induces the target posterior given s1 with maximal fit Prm(s1) = 43%. As there are only

two signals, any model must have a higher fit than Prm(s2) = 57% to be adopted given

s2. However, with more signals to be interpreted, this constraint would be less stringent

because Prm(s2) <
∑

s ̸=s1
Prm(s) = 57%.

Moreover, if the signals are at least as many as the states, a receiver with a uniform prior

can be persuaded to believe anything; with fewer signals than states, the receiver is never

fully persuadable because the condition of Proposition 2 is never satisfied. The next result

formalizes these insights.

Corollary 1. If |S| ≥ |Ω|, all vectors of posteriors are feasible if µ0(ω) = 1/|Ω| for every

ω. If |S| < |Ω|, not all vectors of posteriors are feasible, regardless of the prior.
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Figure 2: Frontier of the feasibility set, by prior

Notes: The lighter the color, the lower the prior: µ0(ω1) = 15% (yellow), 30% (orange), 45% (red).

A stronger result holds for the binary case where the feasibility sets can be ordered: the

closer the receiver’s prior is to 50-50, the more she can be manipulated (Figure 2). Without

loss of generality, let Fε be the feasibility set with respect to prior µ0,ε = (1/2− ε, 1/2 + ε).

Proposition 3 (Binary Case). For ε′ < ε′′, it holds that Fε′′ ⊆ Fε′.

3.3 Sender’s Problem

Given these results, I turn to the sender’s problem. Informed about the receiver’s prior,

the sender knows to what extent he can manipulate her beliefs. Then, he maximizes his

value on the set of feasible vectors of posteriors, knowing the receiver’s preferences and

anticipating the receiver’s optimal action. Optimization is standard, except that the set of

feasible vectors of posteriors could be non-convex, as shown in Figure 1f for the binary case.

The sender faces three key restrictions. Unlike the literature on Bayesian persuasion in

which the sender chooses the signal generating process, he cannot manipulate either the

true model or the signal space. On top of this, the sender communicates without knowing

the realized signal. In what follows, I examine how these assumptions constrain persuasion.

First, the true model cannot be manipulated. Is it more beneficial to choose the true model

or to propose models? I show that proposing models allows for a larger set of posteriors.

Proposition 4. Some feasible vectors of posteriors are not Bayes-consistent: B ⊂ F .

If the sender could influence the true model on top of proposing models, he could increase

his expected value by strategically manipulating the signal probabilities. Nevertheless, the

independence of F from the true model implies that the feasible vectors of posteriors would

remain unchanged.
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Second, the signal space is fixed. This restricts the sender’s communication to interpretations

of observable events in S. If this were not the case and the sender could add dummy signals,

he could persuade the receiver to hold any beliefs in the original space. The intuition is

that if the receiver believes that other signals proposed by the sender were also observable

with S ′ ⊃ S, the sender could leverage those signals that cannot be realized to manipulate

beliefs further. Indeed, one dummy signal is enough to guarantee full manipulability.17

Proposition 5. Adding a dummy signal s0 /∈ S to the signal space S ′ = S∪{s0}, any vector

of posteriors on the original signal space µ ∈ [∆(Ω)]S can be induced.

As a third constraint, the sender provides models without knowing the signal realization.

How does this impact the sender’s expected utility? Knowing which signal the receiver

observes allows the sender to communicate a tailored model inducing the desired posterior.

Avoiding competition among models across signal realizations, any vector of posteriors is

feasible.18 The cost of committing ex-ante to models equals the gap between the uncon-

strained maximal sender’s value over any vector of posteriors and the maximal sender’s value

over the feasible vectors of posteriors:

∆ = max
µ∈[∆(Ω)]S

V (µ)︸ ︷︷ ︸
no commitment

− max
µ∈F

V (µ)︸ ︷︷ ︸
commitment

≥ 0.

This measure captures the sender’s willingness to pay to learn the data available to the

receiver and can be used to comment on the value of microtargeting.19 I discuss an example

of this in Section 4.2.

4 Applications

This section discusses several applications. The first formalizes the political example outlined

in the introduction, focusing on the polarizing consequences of conflicting models. Then,

17If a vector of posteriors is not feasible, the set of tailored models to induce the target have fit levels
such that the compatibility constraint is not satisfied. However, by adding a dummy signal, these models
can be modified by appropriately setting a positive fit given the dummy signal and decreasing the fit levels
given the other signals to which the model is not tailored, so that the compatibility constraint is satisfied.

18This is not the case if the receiver has a default model. In Section 5, I study the sender’s cost of
commitment if the receiver has a default model.

19This is a well-established practice in marketing: analyzing online information on potential customers
to create and convey the most effective message. As a result, different ads are shown to different groups of
consumers. For an example, see https://themarkup.org/news/2021/04/13/how-facebooks-ad-system-
lets-companies-talk-out-of-both-sides-of-their-mouths.

17

https://themarkup.org/news/2021/04/13/how-facebooks-ad-system-lets-companies-talk-out-of-both-sides-of-their-mouths
https://themarkup.org/news/2021/04/13/how-facebooks-ad-system-lets-companies-talk-out-of-both-sides-of-their-mouths


I provide suggestive evidence of this mechanism. Second, a financial application illustrates

the sender’s optimization problem. The third application discusses self-persuasion.

4.1 Polarization

4.1.1 Firehose of Falsehood

Firehose of falsehood is a propaganda technique based on a large number of possibly con-

tradictory and mutually inconsistent messages, defined by Paul and Matthews (2016) to

describe modern Russian propaganda.20 The growing interest in understanding fake news

revealed that people have a hard time distinguishing true and false stories: fake news is

widely shared and believed (Allcott and Gentzkow, 2017). Spreading conflicting and fake

narratives can be an effective strategy for a persuader in manipulating a target audience.

(a) µ0(B) = 70% (b) µ0(B) = 30%

Figure 3: Firehose of falsehood, by voter’s prior

Notes: The orange point is the voter’s prior; the red and the blue points are the vector of posteriors induced
by f and c, respectively, while the purple point is the resulting vector of posterior given these models; the
yellow area represents the set of feasible vectors of posteriors.

Politician Bob is running for president and the election outcome is soon to be revealed. Let

the state space be {B,¬B}, where B is the event in which Bob is the legitimate winner

of the election, and the signal space be {W,¬W}, where W is the event in which Bob is

reported as the winner. For simplicity, assume that voters expect Bob to be fairly elected

with either high probability µ0(B) = 70% or low probability µ0(B) = 30%. Each voter

recognizes Bob as president if, having observed the election outcome, she believes that Bob

is the legitimate winner with a probability higher than 50%. Before the election outcome

is released, voters are exposed to two different models about the reliability of the election

20The authors describe three distinct features of this phenomenon: (i) high number of channels and mes-
sages, (ii) lack of commitment to consistency or objective reality, and (iii) rapid, continuous, and repetitive
communication. I focus on the first two dimensions.

18



system. On the one hand, the official narrative is that mistakes in vote counting are very

rare: πf (W |B) = 99% and πf (W |¬B) = 1%. On the other hand, Bob’s party spreads a

conspiracy theory according to which elections will be rigged against him: if Bob were to

win, votes would not be truthfully reported πc(W |B) = 1%; otherwise, the votes would be

counted randomly πc(W |¬B) = 50%.

Figure 3 shows the vectors of posteriors induced by the fair model (red point) and conspiracy

theory (blue point) by prior. It is enough to compare the slopes of isofit lines associated with

the available models to understand which model is adopted conditional on each signal. For

example, consider a voter that initially expects Bob to be the legitimate president with high

probability (Figure 3a). The red point lies on the steeper isofit line and the blue point lies on

the flatter isofit line: the voter would adopt f conditional on W and c conditional on ¬W ,

resulting in µ =
(
µf
W , µc

¬W

)
(purple point). This type of voter always recognizes Bob as the

legitimate president regardless of the election outcome. In contrast, voters that expect Bob

to be the legitimate president with low probability never recognize him as president (Figure

3b) because they adopt the c given W and f given ¬W . Interestingly, for different priors,

the exposure to the same pair of models not only induces opposite actions conditional on

each signal, but also polarizes beliefs.

4.1.2 Model Polarization

The previous example illustrates how exposure to conflicting models might be a strong driver

of inevitable polarization. It is possible to generalize this result for the binary setting.

Two models m,m′ are conflicting if πm(s1|ω1) > πm(s1|ω2) and πm′
(s1|ω2) > πm′

(s1|ω1). In

other words, to be conflicting, each model must point to a different state given each signal.

The following result highlights the consequences of being exposed to conflicting models.

Proposition 6 (Binary Case, Polarization). For each pair of conflicting models, there exists

a threshold p such that, for every signal s, it holds that (i) µs(ω1) < µ0(ω1) if µ0(ω1) < p,

and (ii) µs(ω1) > µ0(ω1) if µ0(ω1) > p.

The intuition is the following. Any pair of conflicting models induces a vector of posteriors

that is not Bayes-consistent, with both posteriors higher or lower than the prior. This follows

from the fact that each signal triggers the adoption of a different model. Because models

are conflicting, the updating goes always in the same direction. Crucially, the prior drives
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in which direction the posteriors are stretched: there is a threshold such that receivers with

prior higher (lower) than the threshold would hold extreme high (low) posteriors regardless

of the signal realization.21 In the previous example, voters with µ0(B) > 33% are persuaded

to support Bob regardless of the election outcome, holding a strong belief in his legitimacy;

the same models lead voters with µ0(B) < 33% to never recognize Bob as president, always

believing him to be an illegitimate president.

This result highlights how the exposure to conflicting models generates two important phe-

nomena. First, it leads to confirmation bias through the selective adoption of the model

confirming the prior. Second, in the presence of receivers with priors higher and lower than

the threshold, there cannot be consensus on the interpretation of any event and posterior

beliefs always diverge, leading to inevitable polarization.22 This is in stark contrast to mod-

els with Bayesian agents with heterogeneous priors, where beliefs do not move in opposite

directions regardless of the different priors (Baliga et al., 2013).

Several mechanisms have been proposed in the literature to understand the determinants

of polarization. Often polarization is associated with confirmation bias, first formalized by

Rabin and Schrag (1999). They assume agents misinterpret new information as supportive

of current beliefs with an exogenous probability. A recent paper by Fryer et al. (2019) builds

on this, assuming a similar distortion only to signals open to interpretation, and provides

evidence of their predictions. These authors directly assume the prior to be driving the

direction of polarization, while in Rabin and Schrag (1999) this role is assigned to early

observed signals as agents start with a uniform prior over states. Instead, in this paper,

confirmation bias is not assumed but implied by adopting the best-fitting model and can

only occur in the presence of conflicting models. Baliga et al. (2013) provide an explanation

for polarization based on ambiguity aversion, in which agents hedge against uncertainty by

21The proposition is silent on the indifference case where the prior equals the threshold. In that particular
case, the two conflicting models correspond on the same isofit line. Thus, it could be the case that posteriors
are either Bayes-consistent or not, depending on the tie-breaking rule.

22There are different ways to measure polarization: ideological polarization (the extent to which the
electorate has divergent beliefs on ideological issues, e.g., Dixit and Weibull, 2007), partisan sorting (the
extent to which voters identify with a party, e.g., Levendusky, 2009; Mason, 2015), and affective polarization
(the extent to which party members dislike members of other parties, e.g., Iyengar et al., 2019). I focus on
the first: posteriors on states shift in different directions depending on the prior. This type of polarization
has been documented for many decades. In the ground-breaking paper by Lord et al. (1979) and similar
subsequent studies (e.g., Darley and Gross, 1983; Plous, 1991; Russo et al., 1998), subjects were asked to
read the same study relative to a controversial issue (e.g., capital punishment, nuclear technology), then
judge whether it provides evidence for or against the issue, and finally report how the study changed their
beliefs. They all find that participants’ final attitudes were either more in favor if initially favorable to the
issue, or less in favor if initially opposed to the issue.
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making predictions in different directions depending on the prior after intermediate signals.

Other papers illustrate how polarization arises with Bayesian updating in the presence of

additional relevant features, such as high dimensionality of the signal space compared to

the state space (Andreoni and Mylovanov, 2012) or private signals on the interpretation of

evidence (Benôıt and Dubra, 2019). Recent papers discuss how mistakes in source credibility

could amplify polarization. Cheng and Hsiaw (2022) investigate belief distortion due to

double-using the data to update beliefs on the states while also updating beliefs on source

accuracy. Also, this mechanism can lead agents to disagree on how to interpret the same

data. Gentzkow et al. (2023) shows how a small bias in data perception due to ideological

preferences can cause divergent beliefs about both the state and the source precision, even

with Bayesian updating. Unlike these papers, I contribute to this literature on polarization

by highlighting why such divergence in beliefs could happen given a supply of conflicting

models. Furthermore, this channel illustrates another form of polarization: agents polarize

in how they interpret new data. This form of model polarization occurs in two forms. First,

agent with sufficiently different priors adopt different models to explain the same observed

outcome. Second, when agents with similar priors observe different outcomes, they also

adopt different models to make sense of the different information. The next section provides

suggestive evidence of this mechanism.

4.1.3 The Case of the 2020 US Presidential Election

The debate on the fairness of the 2020 US election fractured the American electorate. No

evidence was found supporting the claims of widespread voter fraud, yet competing nar-

ratives on dysfunctional elections were broadly diffused. These allegations circulated for

the entire election campaign before the vote. In particular, the incumbent president at the

time, Donald Trump, cast doubts on the election system, especially on the mail-in ballots,

well ahead of the election results. When ballots were tabulated, some voters interpret the

reported election outcome using these narratives, concluding the election to be rigged.

The preemptive provision of an alternative narrative with respect to the conventional idea

that the election system is fair fits well with the application discussed in the previous section.

When exposed to conflicting models, we should observe: (i) voters with different initial

beliefs adopt different models on the election system once the outcome is observed, and (ii)

voters with the same initial belief adopt different models if they observe different outcomes.
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I rely on insights on the 2020 US election provided by Persily and Stewart (2021) to discuss

stylized facts in line with these two predictions. To allow comparability between the setting

of this paper and the American bipartisan system, I assume that each voter expects his

partisan candidate to win; that is, before the election Republicans expect Donald Trump to

win and Democrats expect Joe Biden to win. On average, this assumption is verified: at the

end of October 2020, the expected winner of the presidential election was Donald Trump

for 85% of Republicans and Joe Biden for 73% of Democrats.23

Figure 4 shows the confidence in accurate vote count over time. Persily and Stewart (2021)

report that before the election, around half of poll respondents expressed confidence that

their own vote would be counted accurately, with Democrats slightly more confident than

Republicans. After the release of the election outcome, the aggregate measure remained

unchanged but an extreme partisan polarization occurred: the gap between Democrats and

Republicans went from 10.9% to 51.7%.24 This suggests that voters with different priors

adopt different models once the election outcome is observed: after the election, Democrats

adopt the narrative claiming the election system to be fair, while Republicans adopt an

alternative story questioning the integrity of the process. This effect is not unique to the 2020

election, and it is also known as the “winners-losers effect”: after the election, supporters of

the losing candidate tend to question the legitimacy of the election, while supporters of the

winning candidate tend to gain confidence in the election system (Sances and Stewart, 2015;

Sinclair et al., 2018). However, the 2020 gap is much wider than in previous elections (Persily

and Stewart, 2021). A potential explanation is the disproportionate spread of distrustful

narratives during the 2020 election campaign compared to previous elections.

Suggestive evidence about the second prediction can be found by looking at how voters’

confidence in state elections changes depending on the state’s reported election outcome.

Figure 5 reports data on the confidence in state elections by the percentage of Trump’s

share of votes. Republicans mostly distrust the accuracy of the state elections if they live in

states where Trump barely lost. The discontinuity in confidence vote between Republicans

from states in which Trump barely lost and those from states in which Trump barely won is

23See Appendix C for more details about the distributions of priors. This pattern in priors can be
consistent with motivated beliefs or wishful thinking: voters wish their partisan candidate to win, influencing
their expectations. I assume these motives might affect initial beliefs but not model selection or the updating
procedure. A proper test of this paper should account for these confounding forces.

24The same pattern can be observed regarding a similar question: “How much confidence do you have
that the 2020 presidential election [will be held/was held] fairly?”. Along this measure, the pre-election gap
was 15%, while the post-election one was 72.6%. The figure is reported in Appendix C.
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Figure 4: Accuracy of vote count (Persily and Stewart, 2021)

Notes: The y-axis shows the percentage answering “a great deal” or “quite a bit” in response to the question
“How much confidence do you have that your vote in the 2020 presidential election [will be/was] counted
accurately?” Source: Economist/YouGov poll, 2020.

(a) Republicans (b) Democrats

Figure 5: Confidence in vote count in state elections (Persily and Stewart, 2021)

Notes: The y-axis shows the percentage answering “very confident” or “somewhat confident” in response
to the question “How confident are you that votes in [state of residence] were counted as voters intended?”
Source: Survey of the Performance of American Elections (SPAE), November 2020.
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stark and larger than in previous elections (Clark and Stewart, 2021). This gap supports the

idea that voters with similar initial beliefs adopt different models if they observe different

realizations. This pattern would be difficult to explain without invoking the idea that they

are exposed to conflicting models. Indeed, the same graph for Democrats barely exhibits a

discontinuity. Since most of these alternative narratives about rigged elections were right-

leaning, it is not unreasonable to assume that Democrats discard them.

4.2 Financial Advice

Next, I illustrate the optimization problem for a financial advisor who wants to persuade

investors to make a specific investment. It is well-known that commissions on investments

could lead to a conflict of interest for the advisor. I consider the case in which investors’ in-

formation about past financial performance influences their beliefs about future investments.

However, the advisor does not have access to this piece of private information. Nonetheless,

he has the incentive to persuade the investor to invest as much as possible.

To manipulate the investor, the advisor can propose different ways to predict future returns

based on past returns.25 In finance, two important alternatives are that returns can exhibit

predictable mean reversion or predictable continuation. When returns exhibit predictable

mean reversion, high past returns predict low future returns, and a contrarian strategy —

selling following high returns — is profitable. When returns exhibit predictable continu-

ation or momentum, high past returns predict high future returns, and a return chasing

— buying following high returns — is profitable. Both phenomena have been empirically

well-documented in finance, with Fama and French (1992) and Lakonishok et al. (1994)

finding predictable mean reversion and Jegadeesh and Titman (1993) finding momentum in

US stocks. Professionals rely on empirical measures to detect these patterns and choose the

most effective trading strategy. Inexperienced investors might interpret past financial per-

formance through the strategy that resonates best with their initial beliefs. The advisor can

use simplified versions of these theories to his advantage. As shown formally in the following

example, an investor with favorable expectations toward the advisor-preferred asset would

always fully invest in that asset because any past data trigger the adoption of the most

25Interestingly, a study by Reich and Tormala (2013) argues that contradicting oneself — initially sup-
porting something and then later switching to something else — might offer a persuasive advantage over
both one-time opinions (supporting something once) and repeated consistent opinions (initially support-
ing something and then later supporting it again). The effect is moderated by trust in the source and it
disappears if the conflicting opinions come from different sources.

24



optimistic model in terms of future performance. Instead, communicating these models to a

pessimistic investor can be counterproductive, and the advisor needs to adjust his strategy.

Formally, each investor has to allocate one unit of endowment over two possible outcomes:

the stock market going up (U) or going down (D). This results in the choice of an hedging

strategy α = (αU , αD) with αU + αD = 1. All investors have the same initial beliefs and I

consider two cases: optimistic investors expecting the market going up with a probability of

70%, and pessimistic investors expecting the same outcome with a probability of 30%. Each

investor holds selective information regarding the past dynamic of the stock market, indicat-

ing either a positive (G) or a negative overall past performance (B), and tries to understand

how this can predict the future one. For example, she only relies on her previous experience

on the stock market, only samples information for a restricted period, or reads some newspa-

pers reporting limited information.26 Assuming a logarithmic utility over the outcomes, the

investor’s expected utility based on her posterior µs is E[UR(α)] =
∑

ω∈{U,D} µs(ω) log(αω).

The investor’s optimal action is to allocate a proportion of the endowment equal to the

corresponding posterior, α∗ = µs.

The financial advisor receives a commission proportional to the receiver’s allocation on out-

come: US(α) = rU αU + rD αD. Assuming rU > rD = 0, V (µ) =
∑

s∈{G,B} Pr
t(s) rU µs(U).

The advisor expects the stock market going up with probability of 40% and knows the true

model where a positive past information positively (negatively) correlates with an upward

(downward) trend in the stock market: πt(G|U) = πt(B|D) = 75%. The advisor does not

know exactly what type of information the investors has looked at, but he expects 45% of

investors have had a positive impression in the past, while 55% have had a negative one.

Figure 6 shows the financial advisor’s indifference curves plotted on the feasible vectors of

posteriors given the investors’ prior; they are driven by the true model, his prior, and his

incentives, on top of the investors’ prior and incentives.

Consider the optimistic investors (Figure 6a). The financial advisor does not want to discard

the investors’ information as irrelevant. Otherwise, the investors’ beliefs would remain at

the prior with an investment of αU = 70%. Using multiple models, the advisor can attain a

higher value. The highest value for the advisor is achieved at the top-right corner, where an

optimistic investor always expects the stock market to go up and never hedges against the

26Empirical evidence shows that personal experiences have a lasting impact on beliefs and behavior, such
as how having lived through a depression affects stock market participation (Malmendier and Nagel, 2011).
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opposite outcome. Intuitively, this means that the advisor can leverage any past experience

of the investor and always move her beliefs in the advantageous direction. He needs two

models to achieve that. One option is to expose the investors to the following pair of models:

(1) model m1 suggesting a perfect positive correlation between past and future performance,

i.e., πm1(G|U) = πm1(B|D) = 1 (red point), and (ii) model m2 suggesting a perfect negative

correlation between past and future performance, i.e., πm2(B|U) = πm2(G|D) = 1 (blue

point). These can be read as simplified versions of the momentum (“early success predicts

long-run success”) and mean reversion (“what goes down goes up”). Because of their opti-

mistic initial beliefs, investors adopt the first given G and the second given B. As a result,

they never hedge against the stock market going down.

(a) µ0(U) = 70%, optimized (b) µ0(U) = 30%, not optimized (c) µ0(U) = 30%, optimized

Figure 6: Financial advice, by investors’ prior and advisor’s communication

Notes: The orange point is the investors’ prior and the yellow point is the advisor’s vector of posteriors
induced by his prior and true model; the red and the blue points are the vector of posteriors induced by
m1 and m2, respectively, while the purple point is the resulting vector of posteriors given these models; the
darker the colored area, the higher the advisor’s value for rU = 1.

Manipulating a pessimistic investor is not that easy. First, full investment is not attainable

with pessimistic investors. The vector of posteriors in the top-right corner is not feasible

given their prior. Second, communicating the same pair of models tailored to the optimistic

investors to the pessimistic ones is self-defeating. A pessimistic investor would always adopt

the most pessimistic model and never invests in the advisor-preferred outcome (Figure 6b).

With a pessimistic investor, the maximal value the advisor can achieve is attained at

µ∗ = ((0.43, 0.57), (0, 1)) at the right-top kink (Figure 6c). The optimal communica-

tion strategy is to entertain two models: (i) model m1 such that πm1(B|U) = 0 and

πm1(G|D) = 0.57 (red point), and (ii) model m2 as defined above for the optimistic in-

vestors (blue point). According to m1, B is a perfectly revealing signal of the stock market

going down. In contrast, G is indefinite news. This model encourages only investors with
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positive information to have αU > 0, and, indeed, it is tailored to those. Again, m2 is a

version of mean reversion, which pushes investors with negative information to invest the

whole endowment in the advisor-preferred outcome. Note that since the first-best outcome

of convincing all pessimistic investors to fully invest in outcome U is not attainable, the

advisor shifts to the second-best: convincing the largest group of investors (the ones with

negative information) to set αU = 100% while increasing αU for the other group (the ones

with positive information) as much as possible.

How much would the financial advisor be willing to pay to know the investors’ experience?

This information would allow the advisor to perfectly target each group of investors with

a tailored model, inducing µ̄ = ((1, 0), (1, 0)). With pessimistic investors, µ̄ is unfeasible,

thus the cost of commitment is ∆ = V (µ̄) − V (µ∗) = 74%rN . In contrast, with optimistic

investors ∆ = 0 because the sender can always achieve his maximal payoff.

4.3 Self-Persuasion

This paper can shed light on intra-personal phenomena as well. In this section, I contribute

to the literature on motivated beliefs, discussing how an agent could distort her own beliefs

by manipulating the perceived informativeness of observable signals.27 I consider a multiple-

selves setting where the conscious mind (receiver) demands the unconscious one (sender)

to supply models. This proposed mechanism to achieve self-serving beliefs can deliver the

classic implications of this literature, but it also provides a bound on belief distortion.

Confirmation bias can emerge because the agent keeps signals open to different interpre-

tations. This could be the case of a student who thinks, and subconsciously likes, to be

intelligent and thus leaves the informativeness of grades open to two interpretations: grades

are a good measure of own ability, or grades are based on luck. She always keeps high con-

fidence in her abilities because she believes grades to be informative after a good grade but

not to convey much information after a bad grade. In such a manner, inconsistent updating

across signals could result from selectively adopting models, which could be an explanation

for some of the evidence on asymmetric updating (e.g., Eil and Rao, 2011; Sharot, 2011;

27Papers on motivated beliefs conjecture different sources of motivations or channels through which beliefs
are distorted, e.g., via direct utility (e.g., Köszegi, 2006; Brunnermeier and Parker, 2005) or via instrumental
value associated with the beliefs (e.g., Bénabou and Tirole, 2002). For a survey, see Bénabou (2015).
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Ertac, 2011; Coutts, 2019; Möbius et al., 2022; Drobner and Goerg, 2022).28

Building on the motivation problem of Bénabou and Tirole (2002), I explore a multiple-

selves setting in which an agent distorts her own interpretations of signals to offset her

time-inconsistent preferences and commit to a costly task. The agent can have high (H)

or low (L) abilities. She receives either a good (G) or a bad (B) signal. After observing

feedback at t = 1, she decides whether to take an action with disutility c that, with high

abilities, would yield benefit v at t = 2. The agent at t = 0 (before the signal) acts as

the sender, choosing potential interpretations of the future signals, while the receiver is

the agent at t = 1 (after the signal). Because the agent has quasi-hyperbolic discounting

(e.g., Laibson, 1997; O’Donoghue and Rabin, 1999), time inconsistency leads to misaligned

incentives. After the signal, it is optimal to take the costly action if the beliefs given the

signal are higher than c/(βδv), where δ ≤ 1 is the discount factor and β > 0 is the present

bias. Instead, before the signal, acting is optimal if the updated belief is higher than c/(δv),

which is lower than the relevant threshold at t = 1 if β < 1. The agent might have the

incentives to distort her own interpretations of signals to avoid a future lack of willpower.

(a) No Present bias (b) Present bias

Figure 7: Motivated beliefs, by present bias

Notes: The orange point is the prior and the yellow point is the vector of posteriors induced by t; the darker
the colored area, the higher the sender’s value for c = 4, v = 10, δ = 0.99, and β = 0.8.

Consider an agent that initially believes to have high abilities with a probability of 70%.

Signals are quite accurate, πt(G|H) = πt(B|L) = 75%. Taking the costly action is always

28Results on asymmetric updating are mixed: some papers find more responsiveness to either good or bad
news, while others find no difference. For example, Barron (2021) finds no evidence of asymmetric updating
in a financial decision-making context where states differ in monetary rewards. In contrast, Drobner (2022)
shows that subjects update neutrally if they expect immediate resolution of ego-relevant uncertainty, whereas
they update optimistically if there is no resolution of uncertainty. This points to the idea that the underlying
state and incentives might be crucial in switching on and off asymmetric updating, which is in line with
the mechanism proposed in this paper. The provision of models depends on whether it is possible to keep
signals open to multiple interpretations (e.g., immediate vs. no resolution of uncertainty) or what incentives
motivate the supply of interpretations (e.g., financial vs. positive beliefs).
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optimal at her initial beliefs and when she does not suffer from present bias. Updating her

prior using the true model maximizes her ex-ante expected payoff (Figure 7a). She does

not distort her beliefs in case of aligned incentives over time. However, self-deception could

be beneficial in the case of sufficiently severe present bias (Figure 7b). Before the signal,

she anticipates that the imminent cost of the action will be more salient than the future

reward at the moment of the decision. Thus, conditional on the bad signal, confidence in

her abilities will not be high enough to act. She overcomes this by distorting the perceived

informativeness of upcoming signals — either discarding the signals as uninformative or

believing only the good signal to be accurate enough. Belief manipulation allows her to

stay motivated as in Bénabou and Tirole (2002), but through a different mechanism —

manipulating how she interprets feedback rather than assuming memory loss or inattention.

5 Extension: Default Model

So far, I assumed the receiver only to consider models proposed by the sender. In this

section, I allow the receiver to initially hold a model, hereafter called the default model : she

also considers her default model on top of the models she is exposed to. This is a natural

and realistic extension, as often individuals bring ways of interpreting data either generated

on their own or provided by others in the past. I show how a default model restricts which

beliefs the sender can induce.

5.1 Feasible Vectors of Posterior Beliefs with a Default Model

Assume the receiver to be endowed with a default model. The set-up is otherwise the same

as in Section 2. The receiver adopts the model with the highest fit given the observed signal

s among the set of models M and her default model d: m∗
s ∈ argmaxm∈M∪{d} Pr

m(s). The

following theorem characterizes the feasible vectors of posteriors in this setting.

Theorem 2 (Default, Many Models). The set of feasible vectors of posteriors given d is

Fd =
{
µ ∈ [∆(Ω)]S : ∀s ∈ S, δ̄(µs)

-1 ≥ Prd(s)
}
.

Moreover, Fd ⊆ F .

The default model restricts belief manipulability. Indeed, the proposed models compete not
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only with each other but also with the receiver’s default model given each signal realization:

the better the fit of the default model given a signal, the less the sender can move beliefs

conditional on that signal.29

Interestingly, the presence of a default model eliminates the cost of ex-ante commitment

for the sender. While, in the absence of a default model, every posterior is feasible when

the sender can communicate a model knowing the signal, this is not the case if the receiver

is endowed with a default model. Proposition 1 of Schwartzstein and Sunderam (2021)

characterizes the feasible posterior beliefs in this setting. Given a default model d, the

sender’s cost of ex-ante commitment is the gap between the maximal sender’s value over

the ex-post feasible vectors of posteriors and the maximal sender’s value over the ex-ante

feasible vectors of posteriors:

∆d = max
µ∈post-Fd

V (µ)︸ ︷︷ ︸
no commitment

− max
µ∈Fd

V (µ)︸ ︷︷ ︸
commitment

,

where post-Fd = {µ ∈ [∆(Ω)]S : ∀s ∈ S, ω ∈ Ω, µ0(ω)/µs(ω) ≤ Prd(s)}, by following

Schwartzstein and Sunderam (2021). Because post-Fd = Fd, providing multiple models

without knowing the signal (ex-ante) allows for the same posteriors achievable by commu-

nicating a model given the realized signal (ex-post).

Corollary 2. With a default model, ex-ante commitment does not restrict the sender’s value:

∆d = 0.

Notice that this result does not imply that the sender should communicate ex-ante the set

of ex-post optimal models. Doing so could be self-defeating in some cases. In particular, the

sender might need extra care in choosing which models to communicate if there are more

than two signal realizations.30

I conclude this section with a result that links Theorem 1 and Theorem 2. The two theorems

are closely related: the set of feasible vectors of posteriors in the absence of a default model

is the union of the feasibility sets with a default model for all default models.

29A receiver endowed with a default model might be more skeptical to adopt other models and thus
only switch to another model if the latter explains the data much better than the default model, e.g.,
Prm(s) − Prd(s) greater than a positive threshold. This would restrict the feasibility further around the
prior depending on the threshold, but the intuition would be qualitatively unchanged.

30With a binary signal, the ex-post optimal models always work ex-ante. To see this, consider any
two tailored models, m1 for s1 and m2 for s2. It is enough to notice that Prm1(s1) ≥ Prm2(s1) implies
Prm2(s2) ≥ Prm1(s2). The same is not guaranteed for a larger signal space.
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(a) (b) (c)

Figure 8: Graphical intuition of Theorem 2 and Proposition 7

Proposition 7. ⋃
d∈M

Fd = F .

Figure 8 provides a graphical intuition of these results for the binary case. Consider a

default model (purple point) in Figure 8a. Given its isofit line (purple line), the red area

corresponds to models with a higher fit given s1, and the blue area corresponds to models

with a higher fit given s2. Thus, the compatible posterior distributions conditional on s1

and the compatible posterior distributions conditional on s2 are, respectively, the ones on

the red line and the blue line on the axes, which together generate the feasible vectors of

posteriors (yellow area) in Figure 8b. These figures also clarify why all the default models

with the same fit levels — corresponding to that same isofit line — induce the same feasible

vectors of posteriors. Figure 8c helps build intuition for Proposition 7. The yellow line

corresponds to the upper frontier of the feasibility set without a default model, while the

colored areas correspond to the feasibility sets in the presence of default models of different

fit levels (given signal s1: 35% red, 50% blue, and 65% green).

5.2 Merchants of Doubt

“Doubt is our product, since it is the best means of competing with the ‘body of fact’ that exists

in the minds of the general public. It is also the means of establishing a controversy.”

— Cigarette Executive (1969)

“Victory will be achieved when average citizens understand uncertainties in climate science.”

— Internal memo by The American Petroleum Institute (1998)

The strategic communication of an alternative model with respect to a commonly shared
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one might be used to deceive the public. This strategy was used by the tobacco industry and

oil companies to challenge a well-established way of looking at the scientific evidence and

to manufacture uncertainty on issues like the health effects of smoking and climate change

(e.g., Michaels, 2008; Oreskes and Conway, 2011). These so-called “merchants of doubt”

established a trustworthy presence in academia and media to discredit peer-reviewed articles

(e.g., blaming other factors, false positive results). Ultimately, they diluted consensus,

despite the scientific community having no doubt. This strategy guaranteed that even with

new evidence emerging over time, the general public had already been exposed to competing

ways of interpreting new facts and found them worthy of consideration. The following

example illustrates how a shared initial model is not enough to prevent polarization in an

heterogeneous population.

(a) µ0(I) = 70% (b) µ0(I) = 30%

Figure 9: Merchants of doubt, by agent’s prior

Notes: The orange point is the prior; the red and the blue points are the vector of posteriors induced by
m and d, respectively, while the purple point is the resulting vector of posteriors given these models; the
yellow area represents the set of feasible vectors of posteriors given d.

Consider a binary state {I,¬I}, where I is the event that the issue is real, e.g., smoking

causes cancer. New evidence emerges, either in favor of the issues (E) or not (¬E). By

default, individuals trust science: favorable evidence means the issue is confirmed, and vice

versa if unfavorable, πd(E|I) = πd(¬E|¬I) = 99%. Even if all agents start with the same

model, the sets of feasible vectors differ drastically depending on their prior. Figure 9 shows

these sets for supportive agents with µ0(I) = 70% and skeptical agents with µ0(I) = 30%.

A lobby wants to strategically challenge this shared model in the population to induce

disagreement on the issue. Assume that the lobby’s claim is that, if the issue is true,

evidence emerges randomly, πm(E|I) = 50%, but there is a high chance of false positive if

the issue is not true because science searches for evidence in that direction, πm(E|¬I) = 70%.

The default model induces a vector of posteriors almost identical for all agents (blue point).

32



However, introducing an alternative model (red point) leads to diverging beliefs regardless

of the evidence. If initially doubtful about the issue, any piece of evidence makes agents

more reluctant to believe the issue is real (Figure 9b). By contrast, agents initially expecting

the issue to be real become even more confident (Figure 9a). Strategically introducing a

conflicting model promotes doubt among agents with different initial beliefs and sharing the

same default model does not deter polarization.

6 Relationship to the Literature

This paper mostly contributes to three strands of literature. First, it contributes to the liter-

ature on narratives in economics. Second, it contributes to the rich literature on persuasion

in economic theory. Also, it relates to the important literature on biased beliefs.

Narratives. Recently, there has been an effort to incorporate narratives in economics,

starting with Shiller (2017, 2019). The present paper builds on the formalization of narra-

tives as models introduced by Schwartzstein and Sunderam (2021). I also adopt the same

model selection rule but investigate the strategic provision of models without knowing the

signal realization. Section 5 provided a direct comparison and discussion of the effect of

this ex-ante commitment for the sender. Recent papers build on this notion of narratives

and assume that best-fitted models are adopted.31 Ichihashi and Meng (2021) sequentially

combine Bayesian and model persuasion: the persuader first designs and then interprets

information once the signal is realized. Their paper differs from mine in two ways: first, the

sender chooses the signal generating process; second, they study the ex-post communication

of models. Schwartzstein and Sunderam (2022) examine the social exchange of models in

networks and show that social learning leads agents to have beliefs closer to the prior and

to feel better able to explain data than before. Moreover, some recent papers take different

approaches to what makes models persuasive (e.g. Ispano, 2022; Yang, 2022).32

31Levy and Razin (2021) study the aggregation of forecasts over time. They assume the agent to look
for the most likely explanation — information structures consistent with previous forecasts and the prior.
Thus, the signal space could vary across explanations, but the analysis can be reduced to an information
structure with a binary signal. Similar to my results, the prior plays a crucial role in the evolution of beliefs.

32In Ispano (2022), the sender communicates a model before the signal is realized and the proposed
model is adopted if it is coherent (conditional on a state, probabilities of each possible news sum to one) and
compatible with her default model (the marginal distribution of news is undistorted). I assume models to be
coherent by definition. However, one could argue that the receiver might hold an incoherent model ex-post.
This follows from how the receiver selects models across signals when exposed to many. To compare results,
coherent and compatible models can only induce vectors of posteriors on the isofit line of the true model.
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Another influential way to formalize narratives is by describing them as causal models,

expressed as directed acyclical graphs (Spiegler, 2016). Eliaz and Spiegler (2020) assume

agents prefer “hopeful narratives” that are empirically consistent, i.e., narratives that max-

imize anticipatory utility and correctly predict the empirical distribution of consequences.

Their analysis focuses on the equilibrium as a long-run distribution over narrative-policy

pairs. Eliaz et al. (2021b) study to what extent a misspecified model can distort pairwise

correlations between variables. Even if the misspecified model cannot distort the marginal

distributions of individual variables, increasing the number of variables in the model can

lead to an almost perfect correlation.33 Directed acyclical graphs are also used by Eliaz

et al. (2022) to study the proliferation of false narratives and their effect on political mobi-

lization, and by Horz and Kocak (2022) to explore which conditions affect the effectiveness

of authoritarian propaganda in reducing citizens’ protests. Alternative formal frameworks

in which narratives have been formally investigated are Bénabou et al. (2018), Izzo et al.

(2023),34 and Szeidl and Szűcs (2022).

There are recent experimental studies inspired by these formal notions of narratives (Bar-

ron and Fries, 2023; Charles and Kendall, 2023; Ambuehl and Thysen, 2023). In particular,

Barron and Fries (2023) study narrative provision and adoption in a financial advice setting,

building on an example of Schwartzstein and Sunderam (2021). Overall, their evidence are

supportive of this framework. They find that advisors with misaligned incentives communi-

cate narratives biased from the truth and are successful in manipulating investors’ beliefs in

the desired direction and narratives that better fit the observed data are more persuasive.35

There is a noteworthy line of empirical research investigating the impact of narratives on be-

liefs and behavior (Hagmann et al., 2020; Morag and Loewenstein, 2023; Müller et al., 2022;

Graeber et al., 2023; Hillenbrand and Verrina, 2022; Bursztyn et al., 2023), or documenting

narratives about macroeconomic phenomena (Andre et al., 2023, 2022).

Persuasion. The impact of persuasion has long been studied in economics (see Little,

2023, for a comparison of approaches in a common framework). This paper contributes

33Also, according to Montiel Olea et al. (2022), including irrelevant covariates in models helps achieve
better perceived predicted ability with a large dataset. Given the fixed state and signal space, all models
have the same dimension in this paper and cannot exhibit this type of misspecification.

34Also in Izzo et al. (2023), the model (described as linear relations between policies and their outcome)
with the highest likelihood given the observed data (thus, the smallest mean squared error) is adopted.

35In one of their treatments, the advisor does not have the opportunity to tailor the narrative to the data
the investor observes. Unlike the present paper, the persuader is restricted to one narrative. Results show
that advisors are less effective in moving beliefs to their target in this treatment.
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to this literature in exploring the consequences of providing interpretations of unknown

events at the time of the communication. Thus, persuasion only occurs through models.

This highlights two main differences with respect to previous literature. First, the signal

is undistorted, unlike leading papers such as Milgrom (1981), where the signal could be

withheld, or Crawford and Sobel (1982), where the signal could be manipulated. A recent

paper by Gleyze and Pernoud (2022) investigates a cheap-talk game in which the receiver is

not only uncertain about the state realization but also about the true model (which variables

are payoff-relevant). They find that communication on models is impossible in equilibrium.

Eliaz et al. (2021a) build on the classic cheap-talk game with multidimensional messages,

relaxing the assumption that the receiver is capable of interpreting the equilibrium messages

and allowing the sender to supply interpretations for them. These strategic interpretations

can be conditioned on both the state and the message, as opposed to the ex-ante commitment

assumed this paper. Second, the persuader cannot influence the signal generating process.

This is in stark contrast with the literature on Bayesian persuasion. Kamenica and Gentzkow

(2011) and many generalizations of their framework (e.g., Alonso and Câmara, 2016; Ely,

2017; Galperti, 2019; Ball and Esṕın-Sánchez, 2021) are about persuasion by generating

information which is then interpreted by Bayesian receivers. This restricts the sender to

inducing only Bayes-plausible distributions of posteriors, unlike this paper. Moreover, a

strand of previous literature studies senders who engage in ambiguous communication —

by proposing several explanations or messages — to persuade receivers who are ambiguity

averse. This was studied in cheap-talk games (Kellner and Le Quement, 2017, 2018) and in

Bayesian persuasion (Beauchêne et al., 2019).

Biased Beliefs. This paper provides alternative explanations for phenomena related to

biased beliefs, such as confirmation bias and polarization — discussed in Section 4. Other

papers suggest different criteria to form beliefs in uncertain settings that could lead to

violation of Bayes-consistency, such as the literature on belief updating with ambiguity-

aversion. For example, Epstein and Halevy (2023) define sensitivity to signal ambiguity

as the attitude towards the uncertainty of the signal generating process and report that a

fraction of subjects is averse to signal ambiguity using a lab experiment. According to their

definition, being sensitive to signal ambiguity implies a violation of the Bayes-consistency

property extended to preferences.
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7 Conclusion

Persuasion has typically been studied in settings where the persuader can control the infor-

mation observed by the agent prior to making a decision, e.g., either by sending a persuasive

message or providing new informative data. However, sometimes this is not possible. In

such contexts, although the persuader cannot control or even know the information that the

agent uses in making a decision, I demonstrate that the scope for persuasion using models

is large, but generally bounded.

Bayesian models assume that beliefs should be consistent across possible realizations: the

receiver cannot update her beliefs in the same direction given every signal. Exposure to

multiple models can lead to the violation of this property. Because of receiver’s bounded

rationality, each signal might trigger the adoption of a different model. Thus, the sender can

leverage multiple models to induce beliefs that cannot be attained by choosing the signal

generating process as in Bayesian persuasion.

Several extensions are left to be explored in future research. First, this paper focuses on

a problem with only one sender and one receiver. I discuss the consequences of conflicting

models in a population of receivers with different priors. Future research should develop

further insights on the sender’s optimization given a distribution of heterogeneous receivers,

balancing the diverging effects models have. Moreover, I consider only one sender com-

municating multiple models. This can also be interpreted as a coordinated strategy by

senders with the same incentives. My extension to the default model is the first step to-

wards studying competition among senders because the sender strategically responds to a

model the receiver already holds. Much remains to be investigated in relation to multiple

(uncoordinated) senders with possibly misaligned incentives. Second, I impose no restric-

tions on which models the sender is willing to supply and the receiver is willing to accept.

On the one hand, senders might be reluctant to communicate models too far from the true

one. For example, belief distortion may bear some psychological costs for the sender, such

as disappointment aversion in line with the literature on psychological game theory (for a

survey see Battigalli and Dufwenberg, 2022). In the experiment by Barron and Fries (2023),

senders communicate biased narratives to their advantage but they also display truth-telling

preferences to some extent. Incorporating these motives might lead to insightful predictions.

On the other hand, receivers might consider only some types of models depending on the

context. Research along this line could shed light on how these restrictions impact welfare.
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This paper discusses a wide range of applications, proposing a possible common mechanism

encompassing inter-personal (polarization, conflict of interest in financial markets, lobbying)

and intra-personal phenomena (overconfidence as motivation). These examples encourage

research with the goal of testing the assumptions and implications in these diverse settings.
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Szeidl, Adam and Ferenc Szűcs (2022) “The Political Economy of Alternative Realities.”

Thagard, Paul (1989) “Explanatory coherence,” Behavioral and brain sciences, 12 (3), 435–

467.

Weick, Karl E (1995) Sensemaking in organizations, 3: Sage.

Yang, Jeffrey (2022) “A Criterion of Model Decisiveness.”

44



A Appendix: Proofs

Proof of Lemma 1. Consider the two statements separately.

(i) For each µ ∈ B, there exists a model that induces µ.

Consider µ ∈ B. Hence, there exists φ ∈ int(∆(S)) such that µ0 =
∑

s φsµs. For each φ,

define a model such that πφ(s|ω) = (µs(ω) φs)/µ0(ω), ∀s, ω. This model is a well-defined

because πφ(s|ω) ∈ [0, 1],∀s, ω, and
∑

s π
φ(s|ω) = 1. Notice that Prφ(s) = φs. Therefore,

this model belongs to M, since φ ∈ int(∆(S)) and µ0 ∈ int(∆(Ω)), and it induces µ:

µφ
s (ω) =

µ0(ω)π
φ(s|ω)

Prm(s)
=

µ0(ω)

φs

(
µs(ω) φs

µ0(ω)

)
= µs(ω), ∀ω, s.

(ii) Each model m induces a vector of posteriors that is Bayes-consistent µm ∈ B.

Consider as weights for the convex combination the fit levels of model m: (Prm(s))s∈S. As

m ∈ M and µ0 ∈ int(∆(Ω)), this is a well-defined distribution in int(∆(S)). Then, µ ∈ B:

∑
s

Prm(s) µm
s (ω) =

∑
s

Prm(s)
µ0(ω)π

m(s|ω)
Prm(s)

= µ0(ω)
∑
s

πm(s|ω) = µ0(ω), ∀ω.

Corollary 3 (Binary Signal). Let µ∅ = (µ0, µ0). For each µ ∈ B\{µ∅}, there exists a

unique model that induces µ.

Proof of Corollary 3. Given Lemma 1, it is only left to show uniqueness in the case of

binary signal. Let (φs1 , φs2) = (φ, 1 − φ). Bayes-consistency implies µ0(ω) = φµs1(ω) +

(1 − φ)µs2(ω); then, φ = (µ0(ω) − µs2(ω))/(µs1(ω) − µs2(ω)),∀ω. Therefore, (φs1 , φs2) ∈

int(∆(S)) if (i) µs1(ω) > µ0(ω) > µs2(ω) or (ii) µs1(ω) < µ0(ω) < µs2(ω), ∀ω.

Claim 1. For every ω, δ̄(µs)
-1 ≤ (1− µ0(ω))/(1− µs(ω)).

Proof of Claim 1. Let ω̄ = argmaxω δ(µs(ω)). Rewrite the condition as

δ̄(µs) =
µs(ω̄)

µ0(ω̄)
≥ 1− µs(ω)

1− µ0(ω)
=

∑
ω′ ̸=ω µs(ω

′)∑
ω′ ̸=ω µ0(ω′)

, ∀ω.

This is equivalent to
∑

ω′ ̸=ω µs(ω̄)µ0(ω
′) ≥

∑
ω′ ̸=ω µ0(ω̄)µs(ω

′), ∀ω, which is satisfied because

µs(ω̄)µ0(ω
′) ≥ µs(ω

′)µ0(ω̄), ∀ω′, by definition of maximal movement.
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Proof of Lemma 2. Fix a posterior µs. Consider the two statements separately.

(i) For every p ∈
(
0, δ̄(µs)

−1
]
, there exists a model inducing µs with fit Prm(s) = p.

Fix p ∈
(
0, δ̄(µs)

−1
]
. To show that there exists a model with fit p inducing µs, I construct

µ such that (i) the target µs is induced conditional on s, and (ii) there exists φ ∈ int(∆(S))

such that Bayes-consistency holds with the additional property φs = p:

∑
s′

µs′(ω) φs′ = µs(ω) φs +
∑
s′ ̸=s

µs′(ω) φs′ = µ0(ω), ∀ω. (a)

Such µ is well-constructed if µ0(ω)− µs(ω) p =
∑

s′ ̸=s µs′(ω) φs′ ≥ 0, ∀ω, which is always

verified for p ≤ µ0(ω)/µs(ω) = δ̄(µs)
−1. Then, Lemma 1 guarantees that there exists a

model inducing this Bayes-consistent vector of posteriors with fit p given s.

Given the many degrees of freedom, there are multiple µ satisfying conditions (a). For

instance, consider µ with µs′(ω) = (µ0(ω) − p µs(ω))/(1 − p),∀ω and s′ ̸= s. These are

well-defined posteriors by Claim 1 and p ≤ δ̄(µs)
−1. Condition (a) is satisfied for φs = p

and φs′ = (1− p)/(|S| − 1),∀s′ ̸= s.

(ii) Every model inducing µs has fit Prm(s) ∈
(
0, δ̄(µs)

−1
]
.

Consider an arbitrary model m with µm
s = µs. First, Prm(s) > 0,∀s because m ∈ M and

µ0 ∈ int(∆(Ω)). Second, Prm(s) = µ0(ω)
µs(ω)

πm(s|ω) ≤ µ0(ω)
µs(ω)

,∀ω by Bayes rule. Because this

holds for every state, the maximal fit for µs is the minimum of this ratio across states:

min
ω

µ0(ω)

µs(ω)
=

1

maxω
µs(ω)
µ0(ω)

= δ̄(µs)
-1.

Proof of Proposition 1. It directly follows from Lemma 1.

Proof of Theorem 1. Inducing an arbitrary µ requires a set of at most K = |S| models

(mk)
K
k=1 such that eachmk ∈ M is tailored to sk: (i) µ

mk
sk

= µsk , and (ii) Prmk(sk) ≥ Prmj(sk)

for each j = 1, . . . , K.

Assume µ ∈ F . Note that the condition of Theorem 1 can be rewritten as
∑

s δ̄(µs)
-1 ≥ 1.

I show that there exists a set of tailored models inducing µ. Instead of constructing each

model, I specify µmk and the fit levels (Prmk(s))s∈S and show that µmk ∈ B. Thus, the

corresponding model exists by Lemma 1. Last, I show that each mk is adopted given sk.
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For each mk, specify: for sk, µ
mk
sk

= µsk and Prmk(sk) = δ̄(µsk)
-1; for s ̸= sk and every ω,

µmk
s (ω) =

µ0(ω)− δ̄(µsk)
-1µsk(ω)

1− δ̄(µsk)
-1

, Prmk(s) =

(
1− δ̄(µsk)

-1∑
s ̸=sk

δ̄(µs)-1

)
δ̄(µs)

-1.

Posteriors are well-defined by definition of maximal movement and Claim 1. Fit levels are

non-negative because δ̄(µs)
-1 ∈ (0, 1] for every s, less than one because µ ∈ F , and sum to

one because
∑

s ̸=sk
Prmk(s) = 1− δ̄(µsk)

-1. Such µmk is Bayes-consistent for (Prmk(s))s∈S:

∑
s̸=sk

Prmk(s) µmk
sk

(ω) =
∑
s ̸=sk

µ0(ω)− δ̄(µsk)
-1µsk(ω)

1− δ̄(µsk)
-1

(
1− δ̄(µsk)

-1∑
s ̸=sk

δ̄(µs)-1

)
δ̄(µs)

-1

=
(
µ0(ω)− δ̄(µsk)

-1µsk(ω)
) ∑s ̸=sk

δ̄(µs)
-1∑

s ̸=sk
δ̄(µs)-1

= µ0(ω)− δ̄(µsk)
-1µsk(ω),∀ω.

Each mk is adopted conditional on sk because for every model model mj it holds

Prmk(sk) = δ̄(µsk)
-1 ≥

(
1− δ̄(µsk)

-1∑
s ̸=sk

δ̄(µs)-1

)
︸ ︷︷ ︸

≤1 for µ∈F

δ̄(µsk)
-1 = Prmj(sk).

Assume µ /∈ F . Then, it holds that
∑

s δ̄(µs)
-1 < 1, equivalent to δ̄(µsk)

-1 < 1−
∑

i ̸=k δ̄(µsi)
-1,∀k.

If it were to exist a set of models inducing µ, each tailored model mk inducing µsk would

be adopted given sk, that is, Pr
mk(sk) ≥ Prmj(sk),∀j ̸= k. Notice that for each mj:

Prmj(sk) = 1−
∑
i ̸=k

Prmj(si) ≥ 1−
∑
i ̸=k

δ̄(µsi)
-1,

since Prmj(si) ≤ Prmi(si) ≤ δ̄(µsi)
-1 for every i by Lemma 2. This leads to a contradiction:

1−
∑
i ̸=k

δ̄(µsi)
-1 > δ̄(µsk)

-1 ≥ Prmk(sk) ≥ Prmj(sk) ≥ 1−
∑
i ̸=k

δ̄(µsi)
-1.

Proof of Proposition 2. Let K = |S|.

Assume that minω µ0(ω) ≥ 1/K. Notice that δ̄(µs)
-1 ≥ minω µ0(ω) because

δ̄(µs) = max
ω

µs(ω)

µ0(ω)
≤ max

ω

1

µ0(ω)
=

1

minω µ0(ω)
.

Then, for every µ it holds that
∑

s δ̄(µs)
-1 ≥

∑
s minω µ0(ω) = Kminω µ0(ω) ≥ 1.
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Assume that minω µ0(ω) < 1/K. I show that there exists at least one µ /∈ F . Let ω =

argminω µ0(ω). Consider µ such that for every s µs(ω) = 1 and µs(ω) = 0, ∀ω ̸= ω. Then,

δ̄(µs)
-1 = minω µ0(ω),∀µs. Hence, µ /∈ F because

∑
s δ̄(µs)

-1 = Kminω µ0(ω) < 1.

Claim 2 (Binary Case). If µ0(ω1) ≤ 50% and µs(ω1) ≤ µ0(ω1) for some s, µ ∈ F .

Proof of Claim 2. Take µ = (µs, µs′) with µs(ω1) ≤ µ0(ω1) ≤ 50%. Note that δ̄(µs)
-1 =

µ0(ω2)/µs(ω2) and δ̄(µs′)
-1 ≥ minw µ0(ω) = µ0(ω1). Hence, δ̄(µs)

-1 + δ̄(µs′) ≥ 1.

Proof of Proposition 3 (Binary Case). Take ε′ < ε′′. I show that it is never the case

that µ ∈ Fε′′ and µ /∈ Fε′ . By Claim 2, any µ such that ∃s : µs(ω1) ≤ 1/2 − ε′, then

µ ∈ Fε′ . Thus, consider µ such that µs(ω1) > 1/2 − ε′ > 1/2 − ε′′,∀s. Let δ̄ε(µs) =

maxω µs(ω)/µ0,ε(ω). Then,

δ̄ε′′(µs) =
µs(ω1)

1/2− ε′′
≥ µs(ω1)

1/2− ε′
= δ̄ε′(µs).

It follows that if
∑

s δ̄ε′′(µs)
-1 ≥ 1,

∑
s δ̄ε′(µs)

-1 ≥ 1. That is, if µs ∈ Fε′′ , then µs ∈ Fε′ .

Proof of Proposition 4. Let K = |S|, N = |Ω|, ω = argminω µ0(ω) and p = µ0(ω).

Take any µ ∈ B. By Lemma 1, there exists a model m such that µm = µ. Then, µm ∈ F

because
∑

s δ̄(µ
m
s )

-1 ≥
∑

s Pr
m(s) = 1, since δ̄(µm

s )
-1 ≥ Prm(s), ∀s by Lemma 2.

It is left to show that there exists µ ∈ F such that µ /∈ B. If minω µ0(ω) ≥ 1/K, all vectors

of posteriors are feasible by Proposition 2. If minω µ0(ω) < 1/K, consider µ such that, ∀s,

µs(ω) = Kp and µs(ω) = ((1−Kp)µ0(ω))/ (1 − p), ∀ω ̸= ω. These are well-defined for

p < 1/K. Then, δ̄(µs) = δ(µs(ω)) = K ≥ (1−Kp)/(1− p) = δ(µs(ω)), ∀ω. Hence, µ ∈ F

because
∑

s δ̄(µs)
-1 =

∑
s 1/K = 1, and µ /∈ B because it induces the same µs ̸= µ0, ∀s.

Proof of Proposition 5. Add a dummy signal s0 /∈ S to the signal space: S ′ = S ∪{s0}.

I want to show that any µ ∈ [∆(Ω)]S can be induced.

Take µ /∈ F , otherwise the statement would be trivially true. To induce µ on S, I show that

there exists a set of K = |S| models (mk)
K
k=1 such that each mk ∈ M ⊂ [∆(S ′)]Ω is tailored

to induce µsk given sk: (i) µmk
sk

= µsk , and (ii) Prmk(sk) ≥ Prmj(sk) for each j. Instead of

constructing each mk, I specify µmk and (Prmk(s))s∈S and show that µmk ∈ B. Thus, the

corresponding model exists by Lemma 1.
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For each mk, specify: for sk, µ
mk
sk

= µsk , and for s ∈ S ′ with s ̸= sk, for every ω

µmk
s (ω) =

µ0(ω)− δ̄(µsk)
-1µsk(ω)

1− δ̄(µsk)
-1

.

Posteriors are well-defined by definition of δ̄(µs) and Claim 1. Also, set Prmk(s0) = 1 −∑K
k=1 δ̄(µsk)

-1, and for s ̸= s0 Prmk(s) = δ̄(µs)
-1. The fit levels are well-defined because

µ /∈ F and δ̄(µs)
-1 ∈ (0, 1]. Each µmk is Bayes-consistent for (Prmk(s))s∈S because

∑
s∈S′

µmk
s (ω)Prmk(s) = µsk(ω)δ̄(µsk)

-1 +
µ0(ω)− δ̄(µsk)

-1µsk(ω)

1− δ̄(µsk)
-1

(1− δ̄(µsk)
-1) = µ0(ω), ∀ω.

Each mk is adopted given sk since Prmk(sk) ≥ Prmj(sk) for each j.

Proof of Proposition 6 (Binary Case, Polarization). Considerm andm′ with πm(s1|ω1) >

πm(s1|ω2) and πm′
(s1|ω2) > πm′

(s1|ω1). Pr
m(s1) > Prm

′
(s1) is equivalent to:

µ0(ω1) > p :=

(
πm(s1|ω1)− πm′

(s1|ω1)

πm′(s1|ω2)− πm(s1|ω2)
+ 1

)-1

.

If µ0(ω1) < p, µM =
(
µm′
s1
, µm

s2

)
, otherwise µM =

(
µm
s1
, µm′

s2

)
. As m and m′ are conflicting,

µM /∈ B with, ∀s, (i) µs(ω1) < µ0(ω1) if µ0(ω1) < p, or (ii) µs(ω1) > µ0(ω1) if µ0(ω1) > p.

Proof of Theorem 2. Inducing an arbitrary µ requires at most K = |S| models (mk)
K
k=1

such that each mk ∈ M is tailored to sk: (i) µmk
sk

= µsk , and (ii) Prmk(sk) ≥ Prm(sk) for

each m ∈ {m1, . . . ,mK} ∪ {d}.

Assume µ ∈ Fd. First, note that µ ∈ F because the condition of Theorem 1 is satisfied:

δ̄(µs)
-1 ≥ Prd(s) = 1−

∑
s′ ̸=s

Prd(s) ≥ 1−
∑
s′ ̸=s

δ̄(µs′)
-1, ∀s.

To induce µ, for each mk construct µmk and (Prmk(s))s∈S following the proof of Theorem

1. Then, because µmk ∈ B, the corresponding model exists by Lemma 1, and each mk is

adopted with respect to m ∈ {m1, . . . ,mK} given sk. It is only left to show that each mk is

adopted given sk with respect to d. Because µ ∈ Fd: Prmk(sk) = δ̄(µsk)
-1 ≥ Prd(sk).

Assume µ /∈ Fd. Then, there must be a signal sℓ such that δ̄(µsℓ)
-1 < Prd(sℓ). If it were

to exist a set of models inducing µ, each tailored model mk inducing µsk would be adopted
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given sk, that is, Prmk(sk) ≥ Prm(sk) for each m ∈ {m1, . . . ,mK} ∪ {d}. This leads to a

contradiction because Prd(sℓ) > δ̄(µsℓ) by assumption.

Proof of Proposition 7. Because Fd depends only on
(
Prd(s)

)
s∈S, rewrite:

⋃
d∈M

Fd =
{
µ ∈ [∆(ω)]S : ∃p ∈ int(∆(S)) such that ∀s ∈ S, δ̄(µs)

-1 ≥ ps

}
.

Take µ ∈ F . It is to be shown that for each µ ∈ F there exists p ∈ int(∆(S)) such that

δ̄(µs)
-1 ≥ ps, ∀s. Set ps = δ̄(µs)

-1/
∑

s′ δ̄(µs′)
-1,∀s. This is a well-defined distribution in

int(∆(S)) since δ̄(µs)
-1 ∈ (0, 1]. As needed, δ̄(µs)

-1 ≥ ps since
∑

s δ̄(µs)
-1 ≥ 1.

Take µ ∈
⋃

d∈MFd. Then, there exists p ∈ int(∆(S)) such that δ̄(µs)
-1 ≥ ps,∀s. Note that

δ̄(µs)
-1 ≥ ps = 1−

∑
s′ ̸=s ps′ ≥ 1−

∑
s′ ̸=s δ̄(µs′). Thus, δ̄(µs)

-1 ≥ 1−
∑

s′ ̸=s δ̄(µs′), ∀s.
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B Appendix: Other Belief Updating Rules

This appendix provides additional results to illustrate why the set characterized in Theorem

1 can be interpreted as an upper-bound on belief manipulability for a class of assumptions on

how the receiver forms beliefs given the models she is exposed to. I consider the information-

based belief updating rules in Table A1, varying either how the model adoption or how the

inference occurs, and show that each of these rules induces a feasible vector of posteriors.

Rule Model Adoption Inference Statement

ML Selection Select best-fitting model Bayes rule

Mixed Model Convex combination of models Bayes rule Proposition A1

Bayesian
Bayesian weights given priors over
models

Bayes rule Proposition A2

Biased-ML Bayesian
Bayesian weights biased towards
best-fitting model

Bayes rule Proposition A3

ML Underinference Select only best-fitting model Underinference Proposition A4

Table A1: Belief updating rules discussed in Appendix B

B.1 Formal Statements

I start by considering a receiver that updates beliefs using a new model constructed by

mixing the models she has been exposed.

Proposition A1 (Mixed Model). Assume the receiver to update beliefs using a mixed model

αM constructed as a convex combination of models with weights αm ∈ [0, 1] for every m ∈ M

with
∑

m αm = 1. The resulting vector of posteriors µαM is Bayes-consistent, thus feasible.

Proof of Proposition A1. The mixed model αM is defined for each ω and s as

παM(s|ω) =
∑
m∈M

αmπm(s|ω).

This model is always well-defined because (1) for each ω and s, παM(s|ω) ∈ [0, 1], (2) for

each ω,
∑

s π
αM(s|ω) =

∑
s

∑
m αmπmk(s|ω) =

∑
m αm

∑
s π

mk(s|ω) = 1, and (3) it belongs

to M because M ⊆ M. Hence, µαM ∈ B ⊂ F by Lemma 1 and Proposition 4.

Next, I look at the traditional case in which the receive is Bayesian with priors over models.
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Proposition A2 (Bayesian). Assume the receiver to be Bayesian with prior over models

ρ ∈ ∆(M). The resulting vector of posteriors µ(ρ,M) is Bayes-consistent, thus feasible.

Proof of Proposition A2. A Bayesian agent with priorρ forms posterior for ω and s as

µ(ρ,M)
s (ω) =

∑
m∈M

ρms µm
s (ω), with ρms =

ρm Prm(s)∑
m′∈M

ρm′ Prm
′
(s)

.

This is equivalent to update beliefs using a mixed model with the weights equals to the

priors over models: µ(ρ,M) = µρM . To see this, calculate the posterior for every ω and s:

µ(ρ,M)
s (ω) =

∑
m∈M

ρm Prm(s)∑
m′∈M

ρm′ Prm
′
(s)︸ ︷︷ ︸

ρms

µ0(ω)π
m(s|ω)

Prm(s)︸ ︷︷ ︸
µm
s (ω)

=

µ0(ω)
∑

m∈M
ρmπm(s|ω)∑

m∈M
ρm Prm(s)

=
µ0(ω)π

ρM(s|ω)
PrρM(s)

= µρM(ω).

Thus, µ
(ρ,M)
s ∈ B ⊂ F by Proposition A1.

Then, I study the case in which the receiver has priors over the models, but biases her

Bayesian beliefs towards the best-fitting model’s prediction.36 If the bias was maximal, the

receiver updates beliefs as in the main text; if the bias is minimal, the receiver is Bayesian.

Proposition A3 (Biased-ML Bayesian). Assume the receiver to form beliefs as a convex

combination between the Bayesian posterior with prior over models ρ ∈ ∆(M) and best-

fitting model’s posterior: for every s and β ∈ [0, 1], µ
β(ρ,M)
s = βµ

m∗
s

s + (1 − β)µ(ρ,M))s. The

resulting vector of posteriors µβ(ρ,M) is feasible.

Proof of Proposition A3. To show that µβ(ρ,M) ∈ F , I show that there exists a model

for which µβ(ρ,M) belongs to the set of feasible vectors of beliefs given this model as default.

Then, by Theorem 2, µβ(ρ,M) is feasible. In particular, I show that µβ(ρ,M) ∈ FρM where

ρM is the mixed model with weights given by the prior over the model ρ.

36While interesting, I do not study the characterizing condition to generalize Theorem 1 for this belief
updating rule. To do so, I would have to make arbitrary assumptions on how the receiver forms prior beliefs
on the models she has been exposed to, which would ultimately drive the result. For example, assuming
the receiver to form uniform beliefs on the proposed models might create incentives to communicate more
models than signals to dilute her prior.
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Notice that

δ
(
µβ(ρ,M)
s (ω)

)
=

βµ
m∗

s
s (ω) + (1− β)µ

(ρ,M)
s (ω)

µ0(ω)
= βδ

(
µ(ρ,M)
s (ω)

)
+ (1− β)δ

(
µm∗

s
s (ω)

)
≤ βδ̄

(
µ(ρ,M)
s

)
+ (1− β)δ̄

(
µm∗

s
s

)
≤ max

{
δ̄
(
µ(ρ,M)
s

)
, δ̄
(
µm∗

s
s

)}
, ∀s, ω.

Because this holds for every ω, then it follows that

δ̄
(
µβ(ρ,M)
s

)-1 ≥ (max
{
δ̄
(
µ(ρ,M)
s

)
, δ̄
(
µm∗

s
s

)})-1
.

To show that µβ(ρ,M) ∈ FρM , it has to hold that δ̄
(
µ
β(ρ,M)
s

)-1
≥ PrρM(s),∀s. This condition

is verified because
(
max

{
δ̄
(
µ
(ρ,M)
s

)
, δ̄
(
µ
m∗

s
s

)})-1
≥ PrρM(s),∀s. To see this, consider the

two cases separately. First, δ̄
(
µ
(ρ,M)
s

)-1
≥ PrρM(s),∀s by Lemma 2 and µρM = µ(ρ,M) (see

the proof of Proposition A2). Second, by Lemma 2 and Prm
∗
s(s) ≥ Prm(s)∀m,

δ̄
(
µm∗

s
s

)-1 ≥ Prm
∗
s(s) ≥

∑
m

ρmPrm(s) = PrρM(s),∀s.

Last, I consider the case in which, once adopted the best-fitting model, the receiver underin-

fers compared to the Bayesian prediction as there is ample evidence that individuals mostly

underinfer from signals (Benjamin, 2019).

Proposition A4 (ML Underinferce). Assume the receiver to select the best-fitting model but

underinfer when applying Bayes rule to update beliefs by a factor of θ ∈ [0, 1].The resulting

vector of posteriors µMθ is feasible.

Proof of Proposition A4. Once adopted model m given s, the receiver stays closer to

the prior by a factor 1 − θ: µmθ(ω) = θµm
s (ω) + (1 − θ)µ0(ω). If θ = 1, the receiver uses

Bayes rule (as in the main text); otherwise, she does not update.

Notice that δ̄(µmθ
s ) ≤ δ̄(µm

s ) for every m. Since θ ∈ [0, 1] and δ̄(µs) ≥ 1 for every µs, it holds

δ̄(µmθ
s ) = max

ω

θµm
s (ω) + (1− θ)µ0(ω)

µ0(ω)
= θmax

ω

µm
s (ω)

µ0(ω)
+ (1− θ) = θδ̄(µm

s )+ (1− θ) ≤ δ̄(µm
s ).

Recall thatm∗
s ∈ argmaxm∈M Prm(s). Theorem 1 implies that µM ∈ F with

∑
s δ̄
(
µ
m∗

s
s

)-1
≥

1. Since δ̄ (µmθ
s )-1 ≥ δ̄(µm

s )
-1, it holds that

∑
s δ̄
(
µ
m∗

s,θ
s

)-1
≥ 1. Therefore, µMθ ∈ F .
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B.2 Graphical Intuition

Consider the receiver to be exposed to M = {m1,m2}. In Figure A1, the pink and green

points respectively corresponds to the induced vectors of posteriors of m1 and m2. The black

point illustrated the resulting vector of posterior by selecting the best-fitting model µM .

If the receiver is Bayesian or uses a mixed model, her beliefs lie on the light blue line in

Figure A1a. This line always lies in the Bayes-consistency area. The blue point represents

the resulting vectors of posteriors µ(ρ,M) for equal prior over models ρ = (0.5, 0.5) and µρM

calculated using mixed model ρM .

To look at the case in which the receiver forms Bayesian beliefs biased towards the best-fitting

model, consider the gray line: this illustrates µβ(ρ,M) for every β. If β = 0, this coincides

with µ(ρ,M) and if β = 1 µM . The gray point shows the case in which β = 0.8. The proof of

Proposition A3 shows that such beliefs are always feasible using the construction of Figure

A1b. I show that µβ(ρ,M) is feasible by showing that it always belongs to the set of feasible

vector of posterior given the mixed model ρM as default.

(a) (b) (c)

Figure A1: Graphical intuition for the binary case

Finally, if the receiver underinfers given the observed signals, the resulting vectors of pos-

terior for every θ connecting µM and µ0, that is, the brown line of Figure A1c. The brown

point illustrates this for θ = 0.7. Because these vectors of posteriors are closer to the prior,

they are always feasible.
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C Appendix: Additional Figures

Figure A2: Priors on election winner, by party affiliation

Notes: The y-axis shows the percentage of answers to the question “Who do you think will win the 2020
presidential election?” by reported party affiliation. Source: Economist/YouGov poll, October 25-27 2020.

Figure A3: Confidence in fair election (Persily and Stewart, 2021)

Notes: The y-axis shows the percentage answering “a great deal” or “quite a bit” in response to the question
“How much confidence do you have that the 2020 presidential election [will be held/was held] fairly?” Source:
Economist/YouGov poll, 2020.
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